Study of De-icing Salt Accumulation and Transport Through a Watershed

Image
Date Created
2017
Report Number
2017-50
Description
The accumulation of chloride in surface waters and groundwater from road deicing and other sources is a growing problem in northern cities of the U.S., including the Minneapolis-St. Paul metro area. To inform mitigation efforts, the transport of chloride in surface waters of a metro-area watershed (Lake McCarrons) was studied in this project to characterize chloride transport by surface runoff, the residence time of chloride in surface water, and how variations in weather influence chloride transport and accumulation processes. Monitoring work over three winters showed that the residence time of chloride in small, sewered watersheds varied from 14 to 26 days, depending on winter weather conditions, with 37 to 63% of chloride applied as de-icers exported in snowmelt and rainfall surface runoff. In contrast, a monitored highway ditch exported less than 5% of chloride applied to the adjacent road. Stormwater detention ponds were found to act as temporary storage for chloride, with persistent layers of high chloride content at the bottom. Chloride monitoring data and runoff simulations were used to explore the possibility of snowmelt capture as a chloride pollution mitigation strategy. We found that capturing snowmelt runoff close to source areas (roads and parking lots) yields the highest chloride concentrations and removal potential.

Assessment and Recommendations for the Operation of Standard Sumps as Best Management Practice for Stormwater Treatment (Volume I)

Image
Date Created
2011
Report Number
2011-08
Description
Volume I: Standard sumps are installed in many urban and suburban storm sewer systems. They may qualify as a best management practice (BMP) to pre-treat stormwater runoff by removing suspended sediment from the water. However, no data exist on the effectiveness of sediment removal by and maintenance requirements for sumps. Such data could justify giving pollution prevention credits to transportation departments, municipalities, counties and other local governments for the use of standard sumps. To determine whether the standard sumps remove suspended sediments from stormwater runoff, two standard sumps with different sizes were tested in a laboratory setting to determine their removal efficiencies under lowflow conditions as well as the effluent concentrations under high-flow conditions. The removal efficiency tests included feeding a specific sediment size and concentration into the influent pipe and then collecting, drying and weighing the sediments removed by the sump at the test conclusion. The high-flow condition tests involved placing a commercial sediment mix inside the sump and assessing the amount of sediment remaining after the sump was subjected to high flows for a period of time. At the conclusion of testing, removal efficiency functions as well as washout functions were developed for the sumps, which can be used to predict the performance of all standard sumps. In addition, an uncertainty analysis was conducted to aid with data interpretation.

Study of Environmental Effects of De-Icing Salt on Water Quality in the Twin Cities Metropolitan Area, Minnesota

Image
Date Created
2008
Report Number
2008-42
Description
A study was conducted to generate knowledge on the environmental effects of de-icing salt, particularly sodium chloride (NaCl), on water quality in Minnesota, especially the Twin Cities Metropolitan Area (TCMA). The Mississippi River receives substantial sodium chloride inputs from the Minnesota River and waste water treatment plants as it passes through the TCMA. In addition, road salt applications in the TCMA use about 350,000 short tons of NaCl every year. A chloride budget at the scale of the TCMA and on individual sub-watersheds in the TCMA indicates that about 70% of the road salt applied in the TCMA is not carried away by the Mississippi River. Rates of seasonal road salt use are correlated with snowfall, road miles and population. Salinity in TCMA lakes increases in winter and decreases in summer. Ionic composition of dissolved substances in lakes of the TCMA suggests unnaturally high sodium and chloride concentrations compared to lakes and other water bodies in the Midwestern U.S. Data indicate a rising trend in urban lake water salinity over the last 30 years. Shallow groundwater in the TCMA, especially near major roadways, has started to show increasing chloride concentrations. Salinity trends in lakes and shallow aquifers of the TCMA are of concern.

Determination of Optimum Time for the Application of Surface Treatments to Asphalt Concrete Pavements - Phase II

Image
Date Created
2008
Report Number
2008-16
Description
Significant resources can be saved if reactive type of maintenance activities are replaced by proactive activities that could significantly extend the pavements service lives. Due to the complexity and the multitude of factors affecting the pavement deterioration process, the current guidelines for applying various maintenance treatments are based on empirical observations of the pavement surface condition with time. This report presents the results of a comprehensive research effort to identify the optimum timing of surface treatment applications by providing a better understanding of the fundamental mechanisms that control the deterioration process of asphalt pavements. Both traditional and nontraditional pavement material characterization methods were carried out. The nontraditional methods consisted of X-Ray Photoelectron Spectroscopy (XPS) for quantifying aging, while for microcracks detection, electron microprobe imaging test (SEM) and fluorescent dyes for inspection of cracking were investigated. A new promising area, the spectral analysis of asphalt pavements to determine aging, was also presented. Traditional methods, such as Bending Beam Rheometer (BBR), Direct Tension (DTT), Dynamic Shear Rheometer (DSR) and Fourier Transform Infrared Spectroscopy (FTIR) for asphalt binders and BBR and Semi-Circular Bending (SCB) for mixtures were used to determine the properties of the field samples studied in this effort. In addition, a substantial analysis of measured pavement temperature data from MnROAD and simulations of pavement temperature using a one-dimensional finite difference heat transfer model were performed.