This study evaluates the first and a second implementations of the MN-QWARN queue warning algorithm developed by Hourdos et al. (1). This algorithm was developed to detect specific crash prone conditions created by traffic oscillations (shockwaves) on freeway systems. The MN-QWARN system was specifically calibrated for the freeway studied in Hourdos et al. (1) and was moved to a new location with minimal calibration. This evaluation found that the right-side model had a detection rate of 25% and a false alarm rate of 36%. The left-side model had a detection rate of 64% and a false alarm rate of 23%. We also note high over-warning rates on both lanes. Based on these findings, we recommend recalibrating the MN-QWARN algorithm at this location to examine improvements in performance.
Max-pressure control is a new adaptive method for signal timing that is mathematically proven to achieve maximum throughput for the entire city road network. This throughput guarantee is nevertheless achieved by a decentralized control algorithm that depends only on local traffic information and is easy to compute. These mathematical properties suggest high potential for use in Minnesota, but the method’s performance in practice is not well-known. Furthermore, it lacks some practical constraints on signal timing that could cause confusion to drivers.
This project conducted methodological improvements and simulation experiments on a calibrated model of 7 intersections in Hennepin County. We modified the theory behind max-pressure control to model first-in-first-out behaviors on lanes shared by multiple turning movements, and to force max-pressure control to follow a signal cycle. After making these significant methodological improvements, we proved that the maximum throughput properties still hold. Then, we calibrated SUMO (Simulation of Urban MObility) microsimulation models of 2 Hennepin County corridors with 7 intersections using signal timing data and 15-minute observed counts, and compared different versions of max-pressure control with existing actuated-coordinated signals. We varied the maximum cycle length and the time step (signal phases can only change once per time step). The performance depended on the control parameters. Overall, for most intersections and demand periods, we were able to find max-pressure control settings that significantly improved over current signal timings. Large reductions in delay (sometimes over 50%) suggested that max-pressure signal timing both achieved higher throughput during peak demand and was more responsive to queues.