Safetruck: Sensing and Control to Enhance Vehicle Safety

Image
Date Created
1997-12
Report Number
1998-29
Description
This report summarizes the work performed during the 18-month period ending in December 1997. Researchers investigated the use of differential global positioning systems (GPS), inertial measurement, and other sensing technologies as the basis of a system that would prevent crashes. Such a system attempts to control the vehicle if it leaves the lane because the driver is incapacitated. The report includes in its appendices related work on driver fatigue and a bibliography on the effect of drugs and alcohol on driving behavior. The long-term goal of this research involves development of a "driver-centered" vehicle control system capable of providing lane-keeping feedback to the driver, and, if necessary, of imposing aggressive intervention strategies to take over control of the vehicle, steer it to a safe position on the shoulder, and stop it. This research also targets the development of "driver assistive" technologies--such as Heads Up Display and torque feedback supplied by the steering wheel--which provide information to the driver without necessarily requiring computer control of the vehicle. The highlight achievement during this funding period has been the successful demonstration of a GPS-based automated lane-keeping mode of a tractor-trailer on the Minnesota Road Research Project (Mn/ROAD) test track. The report concludes with a strategy for pursuing future deployment.

Sensing for HOV/HOT Lanes Enforcement

Image
Date Created
2017
Report Number
2017-05
Description
The use and creation of combined high-occupancy vehicle/high-occupancy toll (HOV/HOT Lanes) have become more common in urban areas since all types of road users can take advantage of the lane either as a high-occupancy vehicle or opting in to pay a congestion adjusted free. However; to maintain working integrity of the lanes for all users; stepped enforcement to discourage cheating has been needed as more lanes are added. This study evaluated the capability of a novel image sensor device to automate detection of in-vehicle occupants to flag law enforcement of HOV/HOT lane violators. The sensor device synchronously captures three co-registered images; one in the visible spectrum and two others in the infrared bands. The key idea is that the infrared bands can enhance correct occupancy detection through known phenomenological spectral properties of objects and humans residing inside the vehicle. Several experiments were conducted to determine this capability across varied conditions and scenarios to assess detection segmentation algorithms of vehicle passengers and drivers. Although occupancy detection through vehicle glass could be achieved in many cases; improvements must be made to such a detection system to increase robustness and reliability as a law enforcement tool. These improvements were guided by the experimental results; as well as suggested methods for deployment if this or similar technologies were to be deployed in the future.

Access to Destinations: Arterial Data Acquisition and Network-Wide Travel Time Estimation (Phase II)

Image
Date Created
2010
Report Number
2010-12
Description
Report #10 in the series: Access to Destinations Study. The objectives of this project were to (a) produce historic estimates of travel times on Twin-Cities arterials for 1995 and 2005, and (b) develop an initial architecture and database that could, in the future, produce timely estimates of arterial traffic volumes and travel times. Our Phase I field study indicated that on arterial links where both the demand traffic volume and the signal timing are known, model-based estimates of travel time that are on average within 10% of measured values can be obtained. Phase II of this project then focused on applying this approach to the entire Twin Cities arterial system. The Phase II effort divided into three main subtasks: (1) updating estimates of demand traffic volume obtained from a transportation planning model to make them consistent with available volume measurements, (2) collecting information on traffic signal locations in the Twin Cities and compiling this into a geographic database, and (3) combining the updated traffic volumes and signal information to produce link-by-link peak-period travel time estimates. The traffic volume update took as inputs the predicted volumes generated by a traffic assignment model and measured average annual daily traffic from automatic traffic recorders, and gave as output updated estimates of the traffic volumes for links lacking automatic traffic recorders. A request to state, county and municipal agencies in the seven-county metro area produced Information on approximately 2,900 traffic signals. Estimated arterial travel times for the morning and afternoon peak periods for 1995 and 2005 were then computed and sent to other components of the Access to Destinations effort.