This report presents the results from a study on shear stress partitioning for vegetation. The project involved partitioning the shear stress from overland flow into one component that acts on the vegetation (form shear) and the remainder that acts on the intervening soil particles (particle shear). Particle shear is important for predicting soil erosion. The study used idealized shapes to represent vegetal elements. Researchers designed and constructed a unique laboratory hydraulic flume, which they used in conjunction with hot-film anemometry to measure particle shear. They also designed and constructed instrumentation to measure the form shear on individual rigid vegetal elements, taking detailed spatial and temporal shear stress measurements for three element densities. Form shear was measured on each element within the test array. The study investigated a total of 16 test scenarios. Particle shear accounted for 13 to 89 percent of the total shear. Shear partitioning theories developed for wind erosion adequately represent the observed data and can be used to determine an appropriate vegetation density for a threshold particle shear.
This report presents the results of a two-year field study on the performance of erosion control products under natural and artificial rainfall conditions. Vegetation, runoff, and erosion data were collected at a newly constructed roadway. Runoff and erosion data were gathered using natural rainfall events and using a rainulator to spray water onto the surface. Treatments included a wood fiber blanket, a straw/coconut blanket, a straw blanket, a bonded fiber matrix, and disk-anchored straw mulch for natural rainfall events. For the rainulator events, a bare soil treatment also was used. Biomass, percent cover, and species composition also were measured at the research site. Five runoff events from natural rainfall were measured and revealed very little difference in sediment production between the straw, straw/coconut, and the wood fiber blankets. These blankets had approximately one-tenth the erosion that was observed for the straw-mulch plots. The impact of the erosion control treatment was substantial for early season artificial events. The sediment loading rates from the blankets and bonded fiber matrix plots were roughly one hundred times smaller than the bare soil plots and 10 times smaller than the straw mulch plots. For late season events, the erosion from these products were approximately one-half of that from straw mulch treatments.
This report presents the results of a field study on the performance of erosion control products under artificial rainfall conditions, bed shear partitioning using a hydraulic flume, and regression analysis of previously published data. Ninety-six runs of different plot lengths, erosion control treatments, vegetative cover, and initial moisture contents were gathered and analyzed. Above-ground biomass varied substantially within the growing season, runoff was most strongly influenced by initial moisture content, and sediment load was substantially reduced using erosion control products and mulches. In the hydraulic flume experiments, the percentage of the total shear acting on soil particles was less than 13.2% for all tests. Failure to obtain a large data base of product characteristics greatly limited the use of regression analysis to explain the performance of erosion control blankets.
The final analysis of historical (TP-40), current (Atlas 14), and future predicted storm events for three watersheds in Minnesota (Duluth, Minneapolis, Rochester) has shown that current design philosophy is not sufficient to prevent flooding from 10-year and larger design storm events and that flood depth and duration will increase given current climate projections. Several stormwater infrastructure adaptation strategies were assessed for reducing flood depth and duration: Baseline (existing conditions), adding rain gardens (aka, Infiltration Basins), adding new wet ponds, retrofitting existing stormwater ponds to be “Smart Ponds, adding new Smart Ponds while also converting existing ponds into Smart Ponds, or upsizing of stormwater pipes to convey more water. In watersheds that are mixed urban, suburban, and rural like Rochester’s Kings Run or Duluth’s Miller Creek sub-watersheds, the most cost-effective climate change adaptation strategy was to build new stormwater wet ponds (Extra Ponds strategy) to treat the impervious surfaces not currently treated by existing wet ponds and other stormwater BMPs. In the fully developed urban 1NE watershed in Minneapolis, the most cost-effective (excluding land costs) climate change adaptation strategy was building wet ponds (Extra Ponds). Securing property for building new stormwater infrastructure in fully developed urban watersheds like 1NE may be a substantial cost compared to other watersheds. Smart Ponds do not require additional land for implementation and thus represent a relatively low-cost alternative that will be more beneficial in watersheds with numerous existing wet ponds.
It has been about fifteen years since soil bioengineering and bioengineering technology have been used in projects to protect slopes and river banks against erosion. Now many consulting firms as well as state and federal agencies promote and practice these techniques. Despite a widespread support of these techniques, many projects have failed. Therefore, it is deemed necessary to develop a set of design guidelines to ensure a higher rate of success. In order to develop design guidelines for soil bioengineering and bioengineering technology, a pilot study was conducted to determine the amount of work already done in these areas, and to define the existing research needs. This report comprises (a) a summary of literature review, (b) interviews with eleven practitioners in the field, (c) an evaluation of three projects done in Minnesota, (d) current research needs, (e) and a brief evaluation of three sites in the vicinity of the Twin Cities area as potential outdoor laboratories to conduct research in the needed areas. It also includes a summary of a site visit of the department of Soil Bioengineering and Landscape Construction at the University of Agricultural Sciences in Vienna, Austria. The study shows that a significant number of studies have been done on topics related to soil bioengineering techniques. However, these studies mainly address the problems at a micro scale, and hence, there is a gap between existing knowledge and practice. Therefore, there is an urgent need to not only study some of the fundamental processes and mechanisms involved in soil bioengineering techniques, but also to investigate these processes at a macro scale to evaluate their strengths and impacts when applied to streambanks and slopes.
The impact of erosion and sediment from construction sites can be reduced by using a variety of onsite and offsite practices. The WATER model was developed to be a tool to assess the effectiveness of different sediment control practices. The WATER model evaluates risk by performing many simulations of a construction site response for different weather conditions. A particularly important component of the WATER model is the prediction of daily climate variables and storm characteristics called WINDS. This model uses the statistics for the analyzed data to predict many years of possible weather conditions. Predicted weather and storm characteristics are in very good agreement with those observed. The WATER model simulates surface runoff, plant processes, and erosion and sediment transport as major hillslope processes. Four runoff events (spring dry run, spring wet run, fall dry run, and fall wet run) from artificial rainfall conditions were measured.
Various agencies have discussed the possibility of using turbidity as an effluent standard for construction site. Turbidity monitoring can be difficult for dynamic construction sites. This project investigated turbidity relationships for conditions of Minnesota and developed protocols for the design and installation of cost-effective monitoring systems. Turbidity characteristics of fourteen different soils in Minnesota were investigated using the laboratory protocols. Trends in turbidity with sediment concentrations were well represented by power functions. The exponent of these power functions was relatively constant between soils and the log-intercept, or scaling parameter varied substantially among the different soils. A regression analysis for the scaling parameter was a function of percent silt, interrill erodibility, and maximum abstraction. A power value of 7/5 was chosen to represent all soils. The field studies were also used to develop turbidity monitoring systems that would be adaptable to construction sites and to collect turbidity data on construction site runoff. Construction site turbidities often exceeded 1000 NTUs and sometimes surpassed 3000 NTUs.
Impervious surfaces have been identified as an indicator of the impacts of urbanization on water resources. The design of stormwater control measures is often performed using the total impervious area (TIA) in a watershed. Recent studies have shown that a better parameter for these designs is the "effective" impervious area (EIA), or the portion of total impervious area that is hydraulically connected to the storm sewer system. Methods to improve estimates of EIA are not highly researched, and need further investigation. The overall goal of this project is to develop a method to estimate EIA in urban watersheds with data that is readily available. First, the existing rainfall-runoff method was improved by reducing the uncertainty associated with EIA estimates and applying it to 40 gauged urban watersheds with different sizes and hydrologic conditions, mostly in the Twin Cities metro area of MN and Austin, TX. The results are then utilized to develop a new method based on the integration of GIS and Curve Number (CN). The GIS-CN method is applicable to un-gauged watersheds and is able to estimate EIA fraction based on TIA and hydrologic soil group (HSG). The results are used to evaluate the potential and the limitations of the GIS-CN method. The outcome and applications of this study improves the rainfall-runoff modelling in urban watersheds and will eventually lead to the design of a more sustainable urban stormwater infrastructure.
Regulations require that stormwater pollution prevention plans be developed for construction activities that disturb an area that is equal to or greater than one acre. Different strategies, including a combination of practices, can be used to develop these plans. The WATER model was a tool developed from a previous project to assess the effectiveness of different on-site sediment control practices. This model is expanded in this study to consider offsite practices, to include processes at the watershed scale, and to allow spatial data sets to be integrated into the simulation framework. Routines to simulate the impact of off-site practices of rock check dams, vegetative filters, and detention ponds are added to the WATER model. The detention pond model has been modified to allow rock and gravel infiltration filters to be included as an off-site practice. Two different algorithms are used: (1) the Protocol Method based purely on empirical data and (2) the Process-Based Method using process-based relationships developed for porous media flow.
Road de-icing is a major cause of chloride impairment in Minnesota's urban waters. The goal of our study was to develop an adaptive management (AM) strategy to reduce chloride impacts caused by de-icing operations. The AM process was informed by our analysis of chloride movement in a residential watershed, providing feedback to the street department of our collaborator, the City of Edina. A key finding was that most the chloride movement occurred during a small number of events, with half of annual chloride movement occurring in less than 50 hours during each of the two years of study. This observation means that targeting these events might be a more effective way to reduce chloride impacts than more generalized approaches. We also found that a significant amount of chloride added to streets during de-icing accumulated in roadside snow piles, likely contributing to groundwater contamination. To address this concern, we developed a spreadsheet tool to estimate steady-state (long-term) chloride concentrations in groundwater. Scenario analyses indicated that groundwater chloride levels in highly urbanized watersheds would eventually exceed water quality standards. We developed a second model, intended for use by urban planners, to estimate the impact of changing the percentage of salted impervious surface on chloride movement in re-developed watersheds. Researchers also developed an Active Management Toolkit with a deicing spreadsheet calculator and educational videos.