Displaying results 1 - 10 of 15
Results per page
10
25
50

Impact of Alternative Storm Water Management Approaches on Highway Infrastructure: Guide for Selection of Best Management Practices - Volume 1

Image
Date Created
2006
Report Number
2005-49A
Description
Highway infrastructure represents a substantial portion of the total impervious areas that generate runoff water. Because of long winters in congested areas that require frequent applications of de-icing materials, much of the runoff has the potential for affecting downstream water quality. However, storm water management techniques themselves have the potential for compromising the integrity of adjacent highways when they result in significant increases of water content in the soil beneath the roadway. Because of impacts and the costs associated with construction and maintenance, any storm water management system needs to be assessed before any decisions are made regarding new highway development or redevelopment. The authors consider Best Management Practices (BMPs) as they relate to the most commonly used storm water management approaches including dry ponds, wet ponds, infiltration trenches, infiltration basins, constructed wetlands, grassed swales, bioretention cells, sand filters and porous pavements. They provide a framework for considering cost of practices, negative impact on infrastructure, results from a BMP-related survey of highway design and maintenance professionals and cost-estimation formulas for each of the most commonly used storm water management approaches in urban Minnesota.

Impact of Alternative Storm Water Management Approaches on Highway Infrastructure: Project Task Reports - Volume 2

Image
Date Created
2006
Report Number
2005-49B
Description
Highway infrastructure represents a substantial portion of the total impervious areas that generate runoff water. Because of long winters in congested areas that require frequent applications of de-icing materials, much of the runoff has the potential for affecting downstream water quality. However, storm water management techniques themselves have the potential for compromising the integrity of adjacent highways when they result in significant increases of water content in the soil beneath the roadway. Because of impacts and the costs associated with construction and maintenance, any storm water management system needs to be assessed before any decisions are made regarding new highway development or redevelopment. The authors consider Best Management Practices (BMPs) as they relate to the most commonly used storm water management approaches including dry ponds, wet ponds, infiltration trenches, infiltration basins, constructed wetlands, grassed swales, bioretention cells, sand filters and porous pavements. They provide a framework for considering cost of practices, negative impact on infrastructure, results from a BMP-related survey of highway design and maintenance professionals and cost-estimation formulas for each of the most commonly used storm water management approaches in urban Minnesota.

Performance-Based Measurement of Optimum Moisture for Soil Compaction

Image
Date Created
2013
Report Number
2013-28
Description
Part of the challenge achieving maximum field density in subgrade materials is transferring the optimal compaction and moisture content data from laboratory testing to the field. This research investigated the proficiency of four different instruments at accurately predicting moisture contents of three subgrade soils (loam, silt, silty/clay) commonly used in Minnesota roadway construction projects. The four instruments were; DOT600 (moisture content), WP4C dewpoint potentiometer (matric suction), the Button Heat Pulse Sensor (BHPS) (temperature rise vs. moisture content), and an exudation pressure test device. The DOT600 showed a strong correlation between the output period (measured in micro-seconds) and volumetric water content. The WP4C did not accurately measure matric suction for any of the loam, silt or silt/clay soils at suctions below 250 kPa. Published data shows that the matric suction of soils compacted at optimum moisture content is usually in the range of 200 - 300 kPa. The BHPS showed a strong correlation between measured temperature rise and water content but in its current configuration is not rigorous enough to withstand field conditions. The exudation pressure device was applied to soils compacted in a AASHTO T99 mold at various moisture contents. Water was exuded from the packed samples at pressures between 100 and 500 psi corresponding to AASHTO-T99 moisture contents of 10 to 25%. Accurate moisture content readings from any of these instruments may not be as important as a more precise and simple calibration between the measurement units of the instrument and the optimum moisture content determined from the AASHTO T99 test.

Assessing and Improving Pollution Prevention by Swales

Image
Date Created
2014
Report Number
2014-30
Description
Roadside swales are drainage ditches that also treat runoff to improve water quality, including infiltration of water to reduce pollutant load. In the infiltration study, a quick and simple device, the Modified Philip Dunne (MPD) infiltrometer, was utilized to measure an important infiltration parameter (saturated hydraulic conductivity, Ksat) at multiple locations in a number of swales. The study showed that the spatial variability in the swale infiltration rate was substantial, requiring 20 or more measurements along the highway to get a good estimate of the mean swale infiltration rate. This study also developed a ditch check filtration system that can be installed in swales to provide significant treatment of dissolved heavy metals and dissolved phosphorous in stormwater runoff. The results were utilized to develop design guidelines and recommendations, including sizing and treatment criteria for optimal performance of the full-scale design of these filters. Finally, the best available knowledge on swale maintenance was combined with information obtained from new surveys conducted to develop recommendations for swale maintenance schedules and effort. The recommendations aim toward optimizing the cost-effectiveness of roadside swales and thus provide useful information to managers and practitioners of roadways. The research results and information obtained from this study can thus be used to design swale systems for use along linear roadway projects that will receive pollution prevention credits for infiltration. This will enable the utilization of drainage ditches to their full pollution prevention potential, before building other more expensive stormwater treatment practices throughout Minnesota and the United States.

Enhancement and Application of the Minnesota Dry Swale Calculator

Image
Date Created
2016
Report Number
2016-15
Description
Roadside drainage ditches (roadside grassed swales) typically receive runoff directly from the road and water is infiltrated over the side slope of the ditch, similar to a filter strip. Water that runs off the side slopes then has a further opportunity to infiltrate as it flows down the center of the ditch. This research focuses on the volume reduction performance of grassed drainage ditches or swales by infiltration. A total of 32 tests were performed during three seasons in four different highways maintained by MnDOT in the Twin Cities metro area. The field-measured saturated hydraulic conductivities (Ksat) correspond to hydrologic soil group A, even though the soil textures indicated correspondence to hydrologic soils groups A, B and C. This means that the infiltration performance is better than expected for these types of soils. In addition, the trend was to have more infiltration when the saturated hydraulic conductivity was higher and for a greater side slope length, as expected. A coupled overland flow-infiltration model that accounts for shallow concentrated flow has been developed. The predicted infiltration loss has been compared with the actual infiltration loss determined from the monitored field tests. In this manner, the validity of the model as well as the associated soil hydraulic and surface geometry parameters have been evaluated. Using the coupled infiltration-overland flow model, multiple scenarios with sensitivity analyses have been computed, and the results have been used to generate a simplified calculator to estimate the annual infiltration performance of a grassed roadside drainage ditch.

Evaluation of Buffer Width on Hydrologic Function, Water Quality, and Ecological Integrity of Wetlands

Image
Date Created
2011
Report Number
2011-06
Description
Human activities including agricultural cultivation, forest harvesting, land development for residential housing, and development for manufacturing and industrial activities can impair the quality of water entering the wetland, thereby detrimentally affecting the natural ecological functions of the wetlands. This can lead to degradation of biota health and biodiversity within the wetland, reduced water quality in the wetland, and increased release of water quality degrading chemicals to receiving waters. Under natural conditions wetlands develop buffer areas that provide some protection from the natural processes occurring on adjacent areas of the landscape. Buffers serve the function of enhancing infiltration of surface runoff generated on adjacent areas, thereby promoting the retention of nutrients in the soil, and retention of sediment suspended in the runoff water, while still allowing runoff water to reach the wetland through subsurface flow routes. To protect wetlands and receiving waters downstream from the wetlands it is important that wetlands in areas disturbed by human activities be provided with sufficient buffer to prevent degradation of wetland biotic integrity as well as degradation of wetland water quality. The question arises, "How much buffer is sufficient?" The objective of this study was to investigate the sufficiency of buffers to protect wetland biotic integrity and water quality, and to evaluate the benefits extended to wildlife by the habit available in wetland buffers. The study was conducted by using a wetland data base available for 64 wetlands in the Twin Cities metro area.

Performance Assessment of Oversized Culverts to Accommodate Fish Passage

Image
Date Created
2011
Report Number
2011-19
Description
In Minnesota there is not a standard culvert design used at road crossings to improve aquatic organism or fish passage. The design process for fish passage in Minnesota is currently based on the knowledge and experience of local county, state and DNR personnel. The design methodology attempts to maintain the natural stream dimensions, pattern and profile through the culvert crossing. If designed properly aquatic organisms and fish that can make it upstream to the culvert should be able to pass through the culvert. This research was conducted to better understand the hydraulic conditions related to the practice of recessing culverts and other fish passage design elements over a range of landscapes in Minnesota. The design elements analyzed included bankfull width, slope, channel materials, side barrels and recessed culverts. Nineteen culvert sites were survey around the state. The main criterion used to evaluate performance of the culverts was the presence or absence of adequate sediment in the recessed culvert barrel. Six of the fourteen sites with recessed barrels had no sediment accumulation. A likely reason that these culverts lack sediment was increased velocities due to improper sizing relative to bankfull channel width and the accumulation of sediment in the side barrels. Wider Rosgen "C" type channels also correlated with performance issues related to culvert design.

Evaluating Roadway Subsurface Drainage Practices

Image
Date Created
2009
Report Number
2009-08
Description
This project involved the evaluation of some configurations of pavement subsurface drainage systems, including the conventional edgedrain system, and two centerline configurations, at 2-foot and 4-foot depths. Testing of these configurations took place on a newly constructed eight-mile section of Nobles County CSAH 35 near Worthington. Drained roadway sections were 500 feet long for each drainage treatment. Each of the treatments was replicated six times, with the outflow for each replication outlet through a tipping-bucket flow monitoring system. The experimental design tested both the drain configuration and the effect of relative elevation of the roadway. Measurement of relative wetness of the pavement base and subgrade materials for each of the drainage treatments was conducted with a Geonics electromagnetic induction instrument (EM38). Data were collected from March 2006 until November 2008, with breaks during the winter periods. Statistical analyses were conducted to look for treatment effects, using both drained volumes as well as the EM38 measurements as measures of drain efficacy. Additional project work included a finite element analysis of the drainage configurations, EM38 evaluation of drainage effectiveness of an open-graded base construction for streets in the city of Worthington, and evaluation of the potential drain plugging effect of crushed concrete fill.

Implementation of Methodology for Weed Management Practices

Image
Date Created
2009
Report Number
2009-10
Description
A study initiated in 2004/2005 in District 4 of Mn/DOT compared the use of 100 1/4-mi long segments against seven 3-mi segments on sampling precision for the estimation of weed infestations in highway rights-of-way for Canada thistle (Cirsium arvense (L.)(Scop.), leafy spurge (Euphorbia esula L.), and poison ivy (Toxicodendron radicans). The comparison showed that the 3-mi and 1/4-mi plans yielded equivalent estimates of mean weed population density, although the results indicated that at the district level precision was greater with the 1/4-mi plan. Further investigations suggested that additional improvements in precision and efficiency would likely occur if segment lengths were shortened to 125' or less. The project implementation phase reported here aimed to investigate efficiencies of two sampling plans, one with weed density measured over 100, 225-ft segments, and one with presence/absence of weeds measured over 150, 14-ft segments. Results showed that the presence-absence surveys almost consistently underestimated the area infestation derived from the 225-ft surveys. The 14-ft survey required substantially less time to conduct, but at this time they appear to be less precise than the 225-ft surveys with regard to quantifying infestation density. It is recommended that an additional season of survey data be analyzed to better quantify the precision of the 14-ft survey results.

Cost Analysis of Alternative Culvert Installation Practices in Minnesota

Image
Date Created
2009
Report Number
2009-20
Description
Various factors associated with conventional culvert design, including shallow water, perched inlets and high flow velocities, can cause difficulties for migrating fish and affect their genetic diversity and long-term survival. Conventional culvert design has traditionally been based on hydraulic conveyance, safety and cost. Recently, some alternative culvert designs have been developed to facilitate salmon migration on the west coat of the United States. These alternative designs focus on matching the natural dimensions and characteristics of the stream channel through the culvert. The intended purpose of these newer designs is to provide unimpeded passage of aquatic life, reduce maintenance costs and improve erosion control. Currently, some of these new designs are being implemented in Minnesota mostly when fish passage is a consideration. There are concerns about the additional costs associated with these alternative designs as well as whether they are really needed at some road crossings. The objectives of this research were to summarize state-wide fish passage concerns related to culvert road crossings on public waters and to perform a cost comparison between the conventional and the alternative culvert designs.