Displaying results 1 - 2 of 2
Results per page
10
25
50

Matrix (Partially Grouted) Riprap Lab Flume Study

Image
Date Created
2015
Report Number
2015-15
Description
The Minnesota Department of Transportation (MnDOT) in conjunction with the Saint Anthony Falls Laboratory (SAFL) has conducted a research study on the use of matrix riprap, or partially grouted riprap, as a spill-through abutment countermeasure. Spill-through abutments at river bridges require a countermeasure to protect the abutment from erosion and scour and often riprap is used. However obtaining large enough stone to protect the abutment can significantly increase construction costs. Matrix riprap, or partially grouted riprap, is an option that will allow for smaller stone, that when partially grouted, will provide equivalent protection to larger sized riprap. This study focused on matrix riprap applied to bridge abutments and included a review of published literature; site visits and observation of matrix riprap installation; laboratory experiments to evaluate matrix riprap application/installation (e.g., non-hydraulic experiments looking at rock and grout placement); experiments to test matrix riprap on a prototype abutment within a flume (hydraulic flume experiments), and finally hydraulic experiments focused on quantifying matrix riprap strength (steep flume experiments). Study results showed that the shear strength of matrix riprap was determined to be more than three times greater than conventional riprap in a laboratory setting. Additional investigation should be completed to better understand the application and performance of the matrix riprap, however this study can be used to support the use of matrix riprap in place of larger stone or other bridge countermeasures.

A Research Plan and Report on Factors Affecting Culvert Pipe Service Life in Minnesota

Image
Date Created
2012
Report Number
2012-27
Description
Culvert pipe material selection has traditionally been a relatively simple task involving metal or concrete pipe. In recent years, the addition of coated metal and plastic pipe has led the federal government to implement a rule requiring the consideration of alternative pipe materials. The current MnDOT Drainage Manual provides limited guidance on the selection of pipe material. The manual is lacking detailed information on the influence of environmental conditions on pipe durability in Minnesota. It is necessary to provide updated, accurate information on pipe material and durability for factors directly related to Minnesota. To reach this goal, the availability and suitability of existing data, as well as the practices associated with predicting pipe life spans must be evaluated. This report is the result of the initial feasibility study for a larger project(s) to update the MnDOT Drainage Manual. The goal for this report is to identify knowledge gaps, produce a research plan that will guide future research, and draw any pipe materials conclusions possible using the data available.