A comprehensive driver assistive system which utilizes dual frequency, carrier phase real time kinematic (RTK) differential global positioning system (DGPS), high accuracy digital geospatial databases, advanced automotive radar, and a driver interface with visual, haptic, and audible components has been used to assist specialty vehicle operators perform their tasks under these low visibility conditions. The system is able to provide a driver with high fidelity representations of the local geospatial landscape through a custom designed Head Up Display (HUD). Lane boundaries, turn lanes, intersections, mailboxes, and other elements of the geospatial landscape, including those sensed by automotive radar, are projected onto the HUD in the proper perspective. This allows a driver to safely guide his or her vehicle in low to zero visibility conditions in a desired lane while avoiding collisions. Four areas of research, are described herein: driver assistive displays, the integration of a geospatial database for improved radar processing, snowplow dynamics for slippery conditions, and a virtual bumper based collision avoidance/gang plowing system. (Gang plowing is the flying in formation of snowplows as a means to rapidly clear multilane roads.) Results from this research have vastly improved the performance and reliability of the driver assistive system. Research on the use of a specialized driver assistance system to assist specialty vehicle operators in low visibility conditions, including the design of a custom Head Up Display (HUD) projecting elements of the landscape in proper perspective. Driver assistive displays, the integration of a geospatial database for improved radar processing, snowplow dynamics for slippery conditions, and a virtual bumper based on collision avoidance/gang plowing system are discussed.
Deployment of any system is driven by market demand and system cost. Initial deployment of the Intelligent Vehicle Lab Snowplow Driver Assistive System (DAS) was limited to a 45 mile section of Minnesota Trunk Highway 7 west of I-494 and east of Hutchinson MN. To better gage demand and functionality, St. Louis and Polk Counties in Minnesota operationally tested the system during the winter of 2003-2004; Polk County also tested during the winter of 2004-2005. Operational benefits were found to be drastically different in the two counties. Low visibility was not an issue with the St. Louis County snowplow routes, so the system offered few benefits. In contrast the topology of Polk county is flat, with almost no trees. High winds combined with few visual cues create significant low visibility conditions. Polk County was pleased with their original system, and obtained a second system and tested it operationally during the 2004-2005 winter. The experience of these two counties is documented in this volume, Volume One. A key component of the DAS is a high accuracy digital map. With the exception of the mapping process, the present cost of the DAS is well documented. Volume Two describes a system designed to collect and process geospatial data to be used by driver assistive system, and the costs and time associated with collecting map data, and creating a map from that data. With cost data complete, counties can determine whether to acquire these systems.