Traffic Safety Evaluation of Lane Constrictor Intersections in Minnesota

Image
Date Created
2024-02
Report Number
2024-03
Description
Between 2018 and 2019, MnDOT installed a lane constrictor design at 66 side-street, stop-controlled intersections in Minnesota. The lane constrictor design narrows the lane width for mainline approaches via a striped median with centerline rumble strips. By narrowing the mainline lane, the goal of this design is to encourage mainline traffic to slow down as it approaches the intersection. The striped median also provides greater separation between mainline directions and draws more attention to the location of the intersection. Following the installation of lane constrictors at MnDOT intersections, overall crash rates have seen little change but there have been decreases in fatal and serious injury (KA) as well as fatal and all injury (KABC) crash rates. These results indicate the addition of lane constrictors have a positive impact on crashes by reducing the severity of crashes, swapping injury crashes for property damage only crashes.

Automatic Incident Detection Through Video Image Processing

Image
Date Created
1992-04
Report Number
96-01U
Description
The objective of this Executive Summary is to summarize the overall progress of this project which has already been documented in seven quarterly and one detailed technical reports. The following explains this project's phases: ► Section 1 describes the AUTOSCOPE™ installations, testing, and calibration results. ► Section 2 describes the AUTOSCOPE™ enhancements. ► Section 3 is the preliminary engineering (1-394 laboratory design). ► Section 4 is the development of the prototype incident detection system. ► Section 5 is the concluding remarks and recommendations. This report is unpublished. 15 copies were produced and distributed.

Crash Tests of Minnesota Mailbox Supports

Image
Date Created
1981-07
Report Number
81-08
Description
In Minnesota snow presents a special problem for rural mailbox installations. So, Minnesota Department of Transportation (Mn/DOT) developed cantilevered mailbox support designs. Recent studies had shown that certain rural mailbox installations easily penetrated the passenger compartment of an impacting vehicle. These same studies pointed out that a large number of people are seriously injured or killed each year as a result of mailbox collisions Therefore, Mn/DOT initiated full scale crash test to ascertain the crashworthiness of its cantilevered design. The study results were: 1. The change in vehicle momentum was below the recommended limit. 2. The test vehicle remained upright with no tendency to spin out or roll over. (The four by four wood vertical support was not hit . Studies by others adequately document vehicle/post interaction) . 3. The windshield was broken in each test. However, no part of the test article penetrated into the passenger compartment. 4. There was no appreciable difference between the support designs- The study concluded that the Mn/DOT cantilevered designs are acceptable in terms of nationally recognized criteria. Some precautions are also given as to use and placement of the supports.

Evaluation and Refinement of Minnesota Queue Warning Systems

Image
Date Created
2023-03
Report Number
2023-05
Description
This study evaluates the first and a second implementations of the MN-QWARN queue warning algorithm developed by Hourdos et al. (1). This algorithm was developed to detect specific crash prone conditions created by traffic oscillations (shockwaves) on freeway systems. The MN-QWARN system was specifically calibrated for the freeway studied in Hourdos et al. (1) and was moved to a new location with minimal calibration. This evaluation found that the right-side model had a detection rate of 25% and a false alarm rate of 36%. The left-side model had a detection rate of 64% and a false alarm rate of 23%. We also note high over-warning rates on both lanes. Based on these findings, we recommend recalibrating the MN-QWARN algorithm at this location to examine improvements in performance.

Empirical Bayes identification of High Hazard Locations for Older Drivers

Image
Creator
Date Created
1994-10
Report Number
95-23
Description
As part of an emphasis on improving road safety, the Minnesota Department of Transportation seeks to identify the locations where older drivers were over-represented in accident records. This research project reports on the use of three methods to help improve the accuracy of identifying locations where older drivers were at increased risk: a basic statistical model, the Empirical Bayes statistical method and a clustering method. Overall, the basic statistical model preformed the best. The clustering method and the Empirical Bayes method could both be usefully applied to the traditional task of high-hazard identification--that of automatically screening a large number of accident sites to identify potential candidates for improvement. This information can point the way to areas that may require a more detailed engineering analysis.