DEPARTMENT OF TRANSPORTATION

Appendices for Review and Assessment of Past MnDOT Bridge Barrier Types

William F. Williams, Principal Investigator

Texas A&M Transportation Institute (TTI) Texas A&M University

JULY 2020

Research Project Final Report 2020-24A

APPENDIX A: SITE VISIT PHOTOS AND DETAILS OF MNDOT BARRIERS

APPENDIX A1: J BARRIER - PHOTOS TAKEN FROM THE SITE VISIT AND DETAILS RECEIVED FROM MNDOT

Bridge No. 27169

Figure A1-1 Bridge No. 27169 Photos.

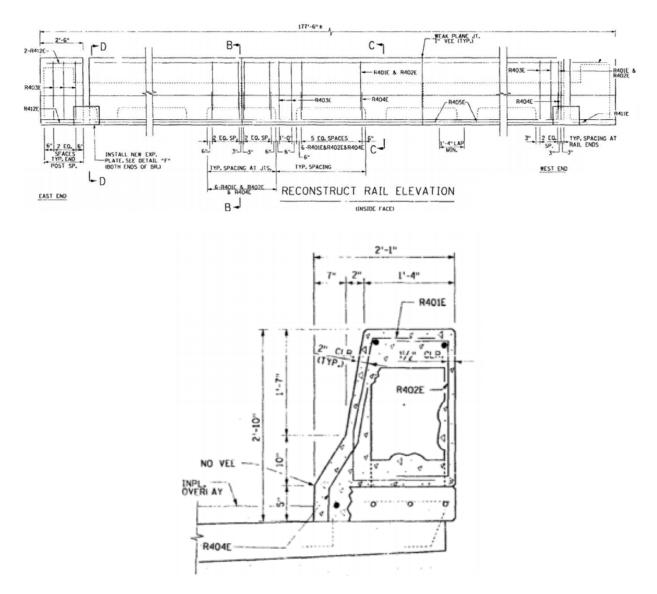


Figure A1-2 Bridge No. 27169 Details.

Bridge No. 19056

Figure A1-3 Bridge No. 19056 Photos.

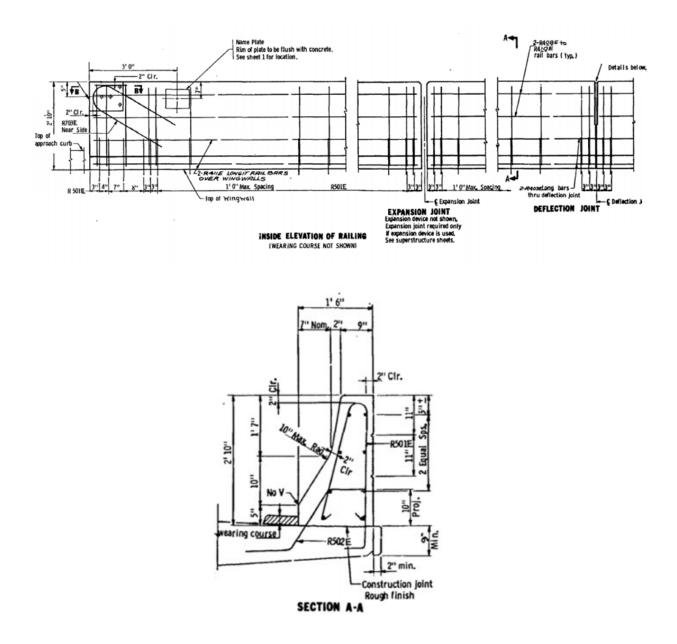


Figure A1-4 Bridge No. 19056 Details.

Figure A1-5 Bridge No. 82502 Photos.

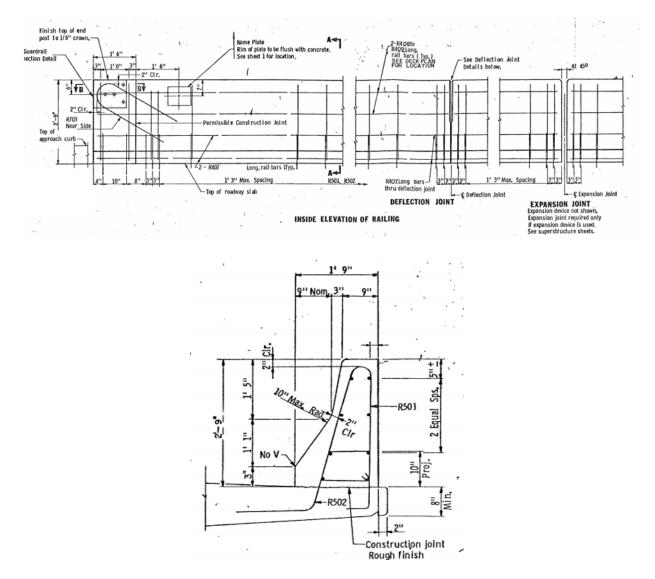


Figure A1-6 Bridge No. 82502 Details.

Figure A1-7 Bridge No. 19042 Photos.

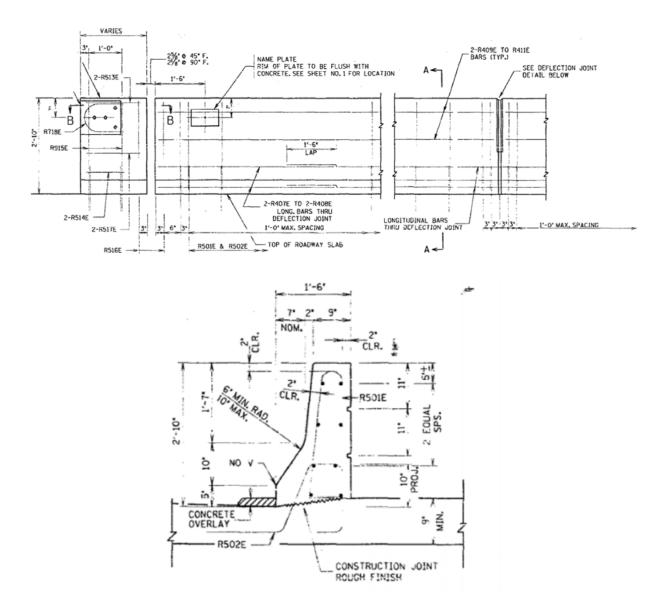


Figure A1-8 Bridge No. 19042 Details.

Figure A1-9 Bridge No. 62828 Photos.

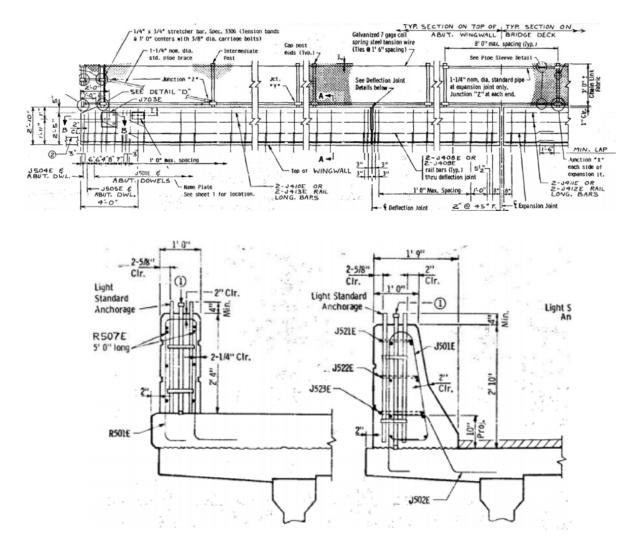


Figure A1-10 Bridge No. 62828 Details.

APPENDIX A2: ONE LINE BRIDGE RAIL - PHOTOS TAKEN FROM THE FIELD SITE VISIT AND DETAILS RECEIVED FROM MNDOT

Figure A2-1 Bridge No. 27944 Photos.

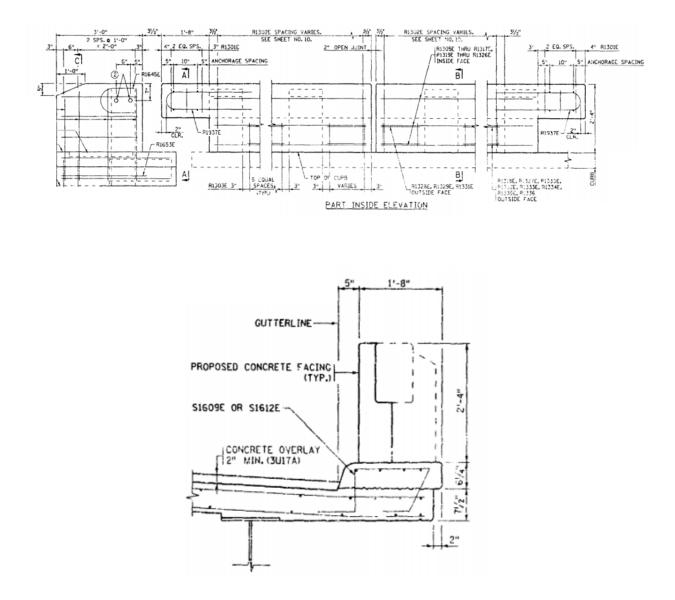
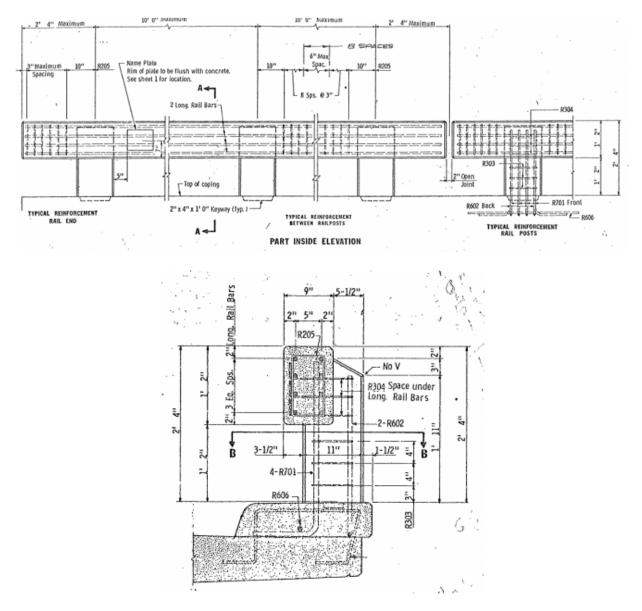
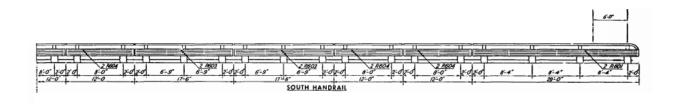


Figure A2-2 Bridge No. 27944 Details.

Figure A2-3 Bridge No. 30505 Photos.

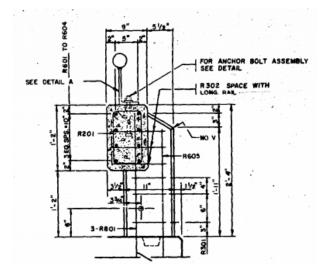

Figure A2-4 Bridge No. 30505 Details.

Figure A2-5 Bridge No. 69834 Photo.

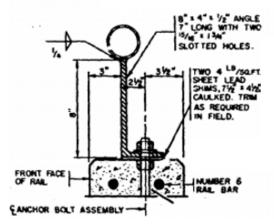
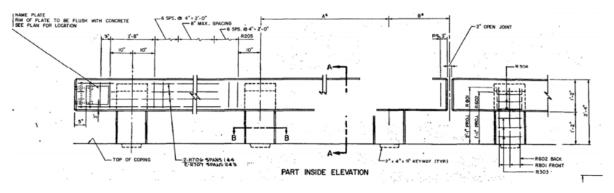



Figure A2-6 Bridge No. 69834 Details.

Figure A2-7 Bridge No. 70802 Photos.

*DIMENSION "A" NOT OVER 10'-0". *DIMENSION "B" NOT OVER 2'-6".

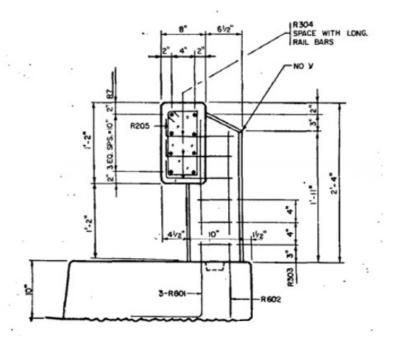


Figure A2-8 Bridge No. 70802 Details.

Figure A2-9 Bridge No. 25505 Photos.

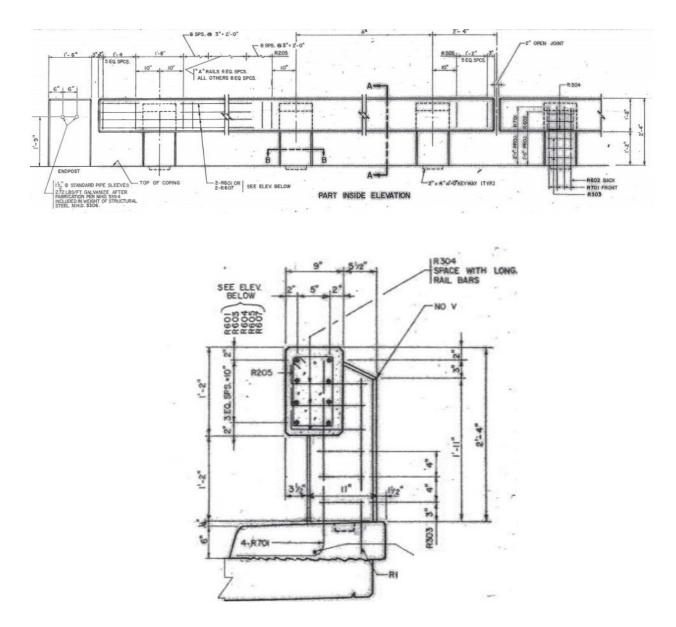


Figure A2-10 Bridge No. 25505 Details.

Figure A2-11 Bridge No. 82804 Photo.

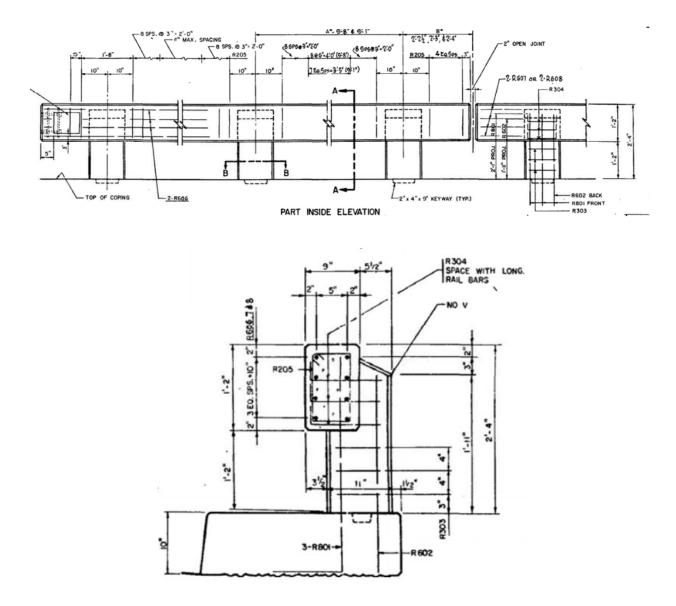


Figure A2-12 Bridge No. 82804 Details.

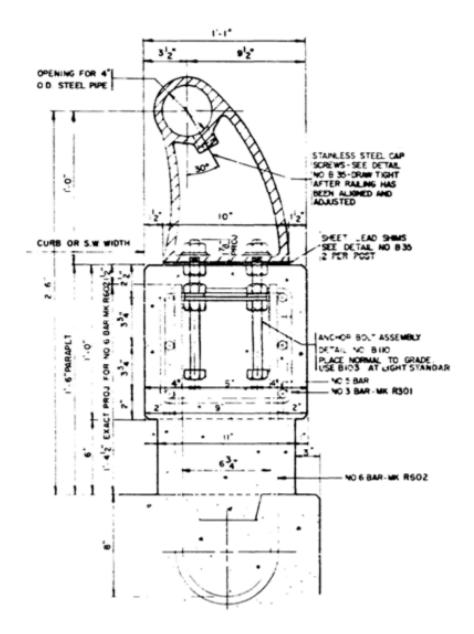


Figure A2-13 Bridge No. 9805 Details.

Figure A2-14 Bridge No. 62069 Photo.

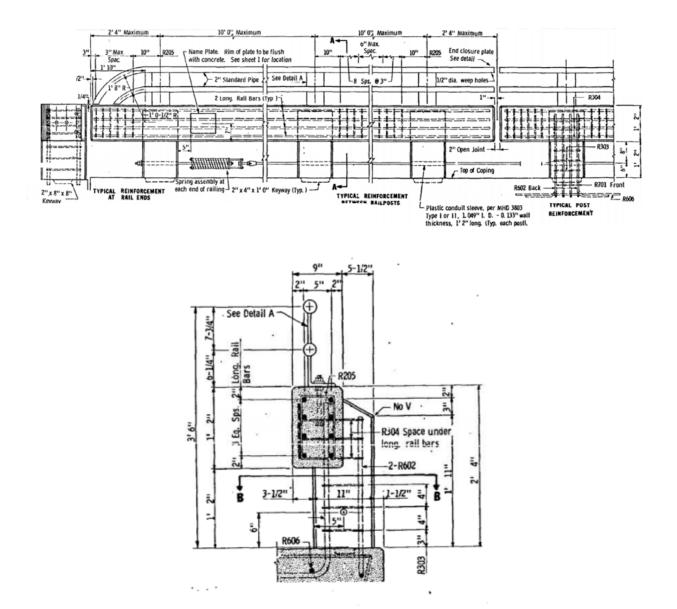


Figure A2-15 Bridge No. 62069 Details.

Figure A2-16 Bridge No. 27042 Photo.

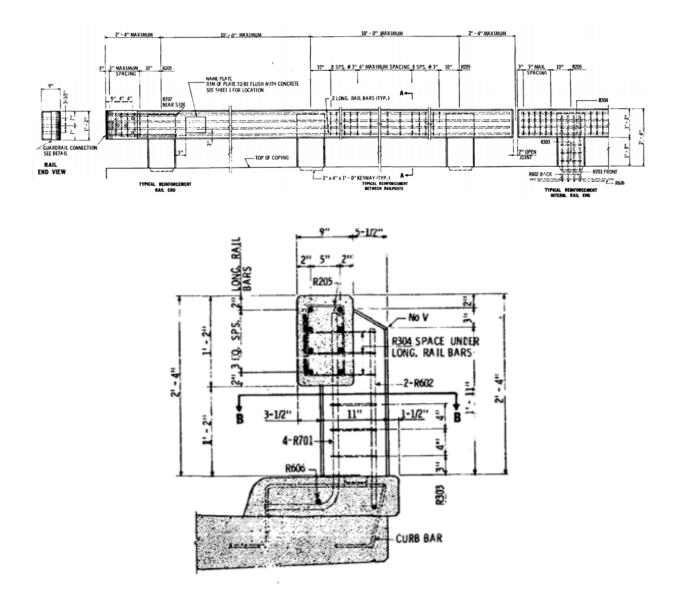
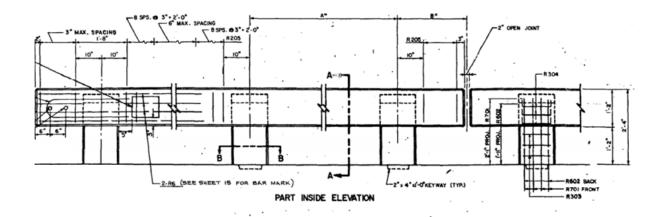



Figure A2-17 Bridge No. 27042 Details.

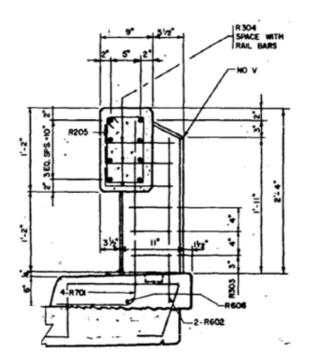


Figure A2-18 Bridge No. 62040 Details

APPENDIX A3: G BARRIER - PHOTOS TAKEN FROM THE FIELD SITE VISIT AND DETAILS RECEIVED FROM MNDOT

Figure A3-1 Bridge No. 09830 Photos.

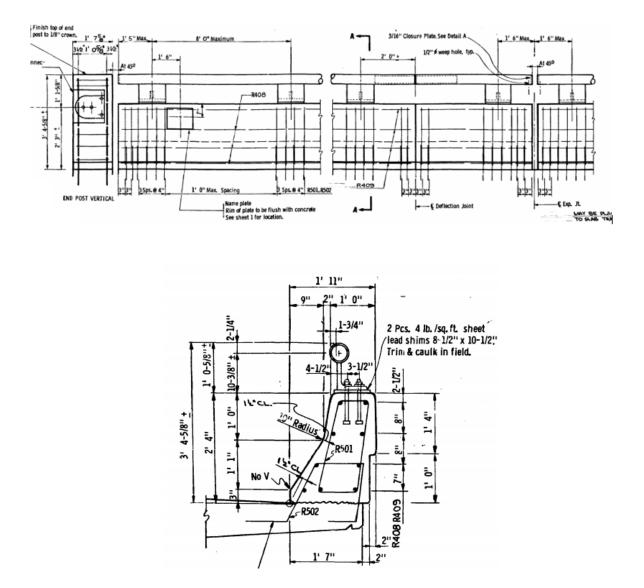


Figure A3-2 Bridge No. 09830 Details.

Figure A3-3 Bridge No. 19021 Photos.

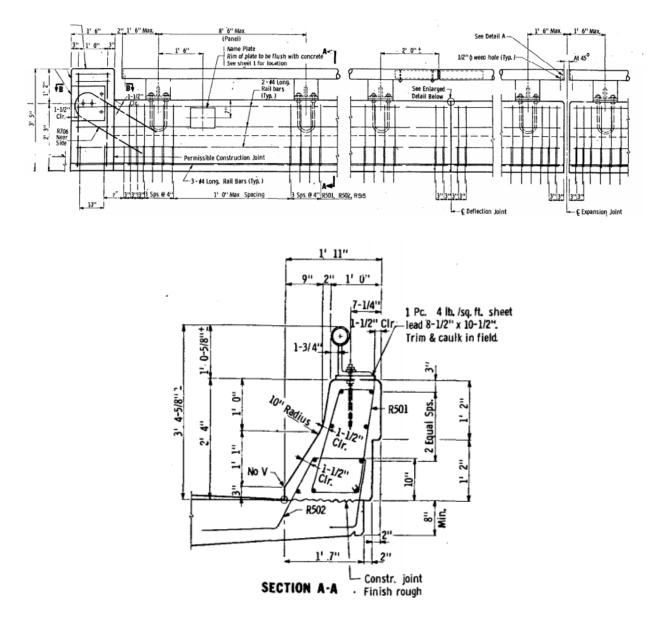


Figure A3-4 Bridge No. 19021 Details.

Figure A3-5 Bridge No. 86812 Photos.

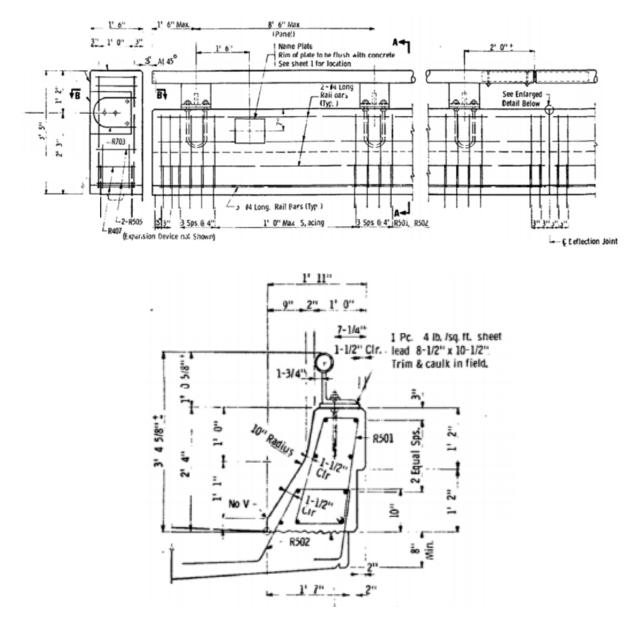
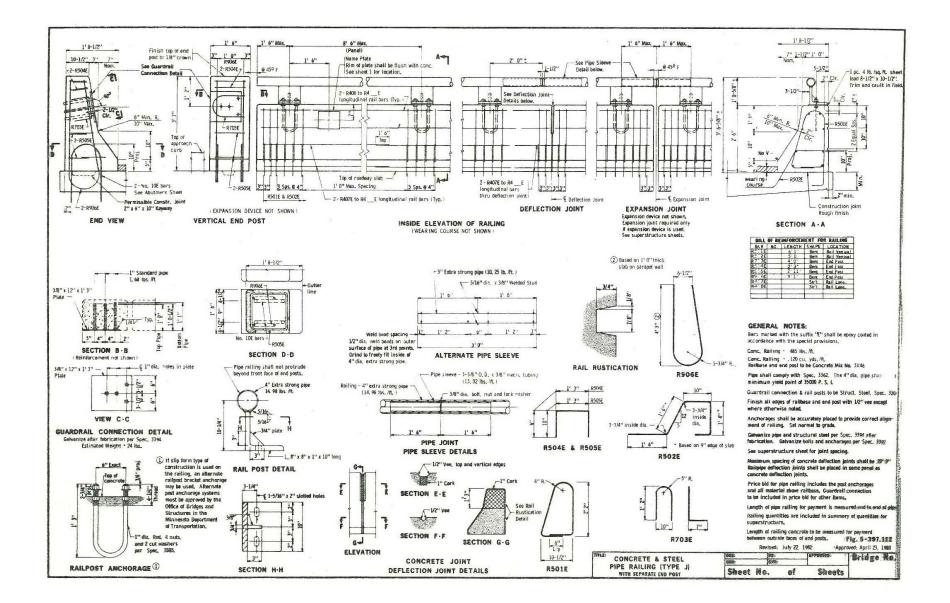



Figure A3-6 Bridge No. 86812 Details.

APPENDIX B: J AND F BARRIER ANALYSES

APPENDIX B1: J BARRIER ON FIGURE 5-397.112

Texas A Transpor Institute	SUBJECT: MnDOT J-Barrier Figure 5-397.112 Figure 5-397.112 MASH TL-3 Compliance Assessment MASH TL-3 Compliance Assessment
(1b-conti.) <u>Concrete Parapet Inpu</u>	<u>ts:</u>
H _w := 2Sin	Height of the concrete parapet/wall measured from the top of the roadway surface/overlay (in.)
$\mathbf{h}_{\mathbf{W}} := \mathbf{H}_{\mathbf{W}} + \mathbf{t}_{0}$ $\mathbf{h}_{\mathbf{W}} = 30 \cdot \mathbf{i} \mathbf{n}$	Total height of the concrete parapet/wall (in.)
Parapet Vertical Reinforcement Inputs	
$A_{vpl.mid} = 0.31in^2$	Area of one parapet vertical reinforcement leg in the tension zone at midspan (in^2)
s _{vp.mid} = 12in	Average Spacing of parapet vertical reinforcement at midspan (in.)
d _{cp.mid} := 11.18in	Extreme distance of parapet vertical ranforcement in tension at midspan (in.)
$A_{vp1.end} = 0.31in^2$	Area of one parapet vertical reinforcement leg in the tension zone at joints/ends (in $\!\!\!\!\!\!2)$
$s_{vp.end} = 4in$	Average Spacing of parapet vertical reinforcement at joints/ends (in.)
d _{cp.end} := 11.18in	Extreme distance of tension parapet vertical reinforcement at joints/ends (in.)
Longitudinal Reinforcement Inputs:	
$A_w = 0.8in^2$	Area of longitudinal reinforcement bars in tension (in ²)
d _w := 10.63in	Extreme distance of tension longitudinal reinforcement of wall (in.)

Texas A Transpo Institute	SUBJECT: MnDOT J-Barrier Figure 5- 397.112 Figure 5- 397.112 MASH TL-3 Compliance Assessment MASH TL-3 Compliance Assessment
(1b-conti.) <u>Concrete Parapet Inpu</u>	<u>ts:</u>
Deck Anchorage Vertical Reinforceme	ent Inputs:
L _{proj_R502E} := 10in	Projected length of R502E reinforcement over the slab (in.)
L _{wid_R502E} := 10in	Outer width of R502E reinforcement (in.)
Cover := 2in	Cover clear distance (in.)
$Ratio_{R502E} := \frac{5}{12}$	Inclined angle of R502E reinforcement
d _{b_R502E} := 0.625 in	Nominal diameter of R502Ereinforcement (#5 bar)
d _{ca} := L _{wid_R502E} + L _{proj_R502E}	$\frac{1}{2}$ Ratio _{R502E} + Cover - $\frac{1}{2}$ d _{b_R502E} = 15.854 in
	Extreme distance of tension deck anchorage vertical reinforcement (in,)
$A_{val.mid} = 0.31in^2$	Area of one deck anchorage vertical reinforcement leg in the tension zone at midspan (in^2)
s _{va.mid} = 12in	Average Spacing of deck anchorage vertical reinforcement at midspan $(in.)$
$d_{ca.mid} := d_{ca} = 15.854 \cdot in$	Extreme distance of tension deck anchorage vertical reinforcement of the wall at midspan(in.)
$A_{val.end} = 0.31in^2$	Area of one deck anchorage vertical reinforcement leg in the tension zone at joints/ends (in ²)
s _{va.end} = 4in	Average Spacing of deck anchorage vertical reinforcement at joints/ends (in)
$d_{ca,end} = d_{ca} = 15.854$ in	Extreme distance of tension deck anchorage vertical reinforcement at joints/ends (in.)

	Texas A&M Transportation Institute	<u>SUBJECT</u> MnDOT J-Barrier Figure 5-397.112 MASH TL-3 Compliance Assessment
(1b) <u>Steel Rail, Post, ar</u>	nd Anchor Rod Inputs:	
Steel Rail Inputs: a) Steel Tube Rail is M.H.D b) Steel Tube Rail is a 4" ex	D. 3362 material, Fy=35ksi atra strong pipe	4" extra strong pipe 14, 98 lb, /L
Fyr = 35ksi	Yield Strength of Steel Tube Rail (k:	
d _{oR} := 4.5in	Outside diameter of Steel Tube Rail	3/8
d _{iR} := 3.83in	Inside diameter of Steel Tube Rail (in	n.)
S teel Post Inputs: a) Steel Post is M.H.D. 330 a) Steel Post is a 8"x8"x1"x		POST DETAIL
Fyp = 36ksi	Yield Strength of Steel Post (ksi)	3-1/4"
w _p := 10in	Width of Steel Post about the bending	; azis (in.)
$\mathbf{p} = \mathbf{lin}$	Thickness of Steel Post (in.)	
hp = 9.25in	Height from the bottom of the post to centroid of the steel tube rail (in.)	the
L _p := 8.5ft	Sted Post Spacing (ft.)	SECTION H-H

a) Anchor Rods are Gr. 361 5) Anchor Rods are 1"¢ x 1		_ 6" Erect_ 2
F _{u.rod} := 58ksi	Tensile Strength of Anchor Rods (ksi)	
N _{rod.shear} = 2	Number of Anchor Rod cross-sections acting in Shear	
Nrod.tension := 2	Number of Anchor Rod cross-sections acting in Tension	
d _{rod} := 4.75in	Distance from the anchor rods acting in tension to the back of the steel plate (in.)	and 2 cut washers per Spec. 3985.
¢ _{rod} ≔ 1in	Diameter of Anchor Rods (in)	RAILPOST ANCHORAGE

(1c) Design Force Inputs:

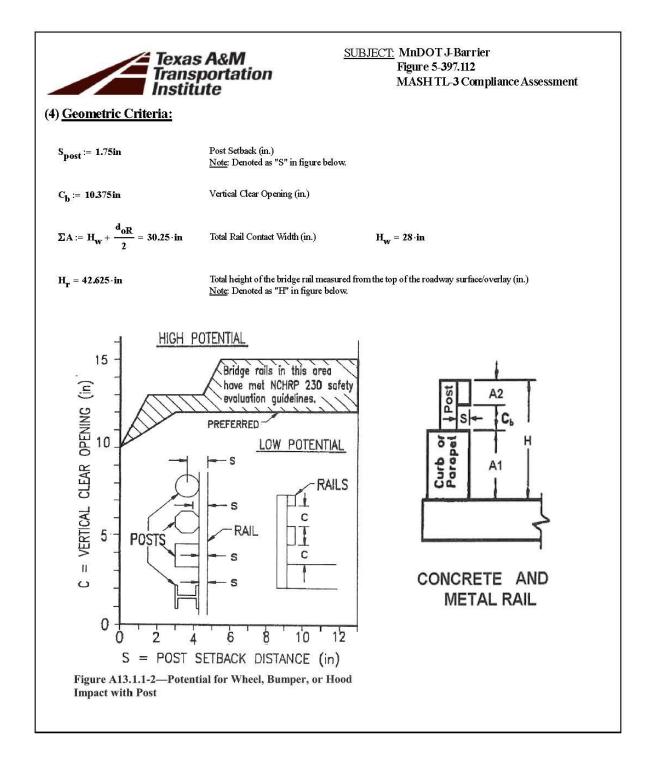
Design Forces for Traffic Railings

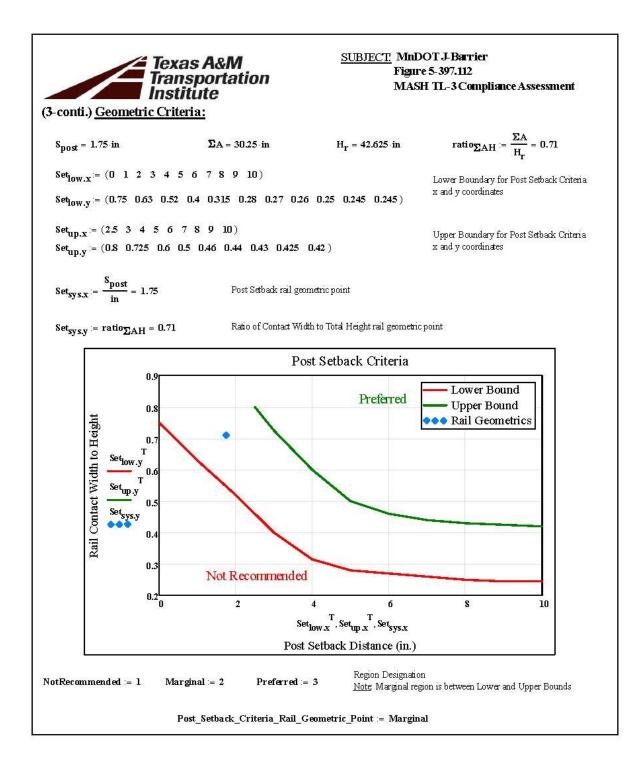
Test Level	Rail Height (in.)	Ft (kip)	FL (kip)	F _v (kip)	Lt/LL (ft)	L _v (ft)	H _e (in)	H _{min} (in)
TL-1	18 or above	13.5	4.5	4.5	4.0	18.0	18.0	18.0
TL-2	18 or above	27.0	9.0	4.5	4.0	18.0	20.0	18.0
TL-3	29 or above	71.0	18.0	4.5	4.0	18.0	19.0	29.0
TL-4 (a)	36	68.0	22.0	38.0	4.0	18.0	25.0	36.0
TL-4 (b)	between 36 and 42	80.0	27.0	22.0	5.0	18.0	30.0	36.0
TL-5 (a)	42	160.0	41.0	80.0	10.0	40.0	35.0	42.0
TL-5 (b)	greater than 42	262.0	75.0	160.0	10.0	40.0	43.0	42.0
TLÓ		175.0	58.0	80.0	8.0	40.0	56.0	90.0

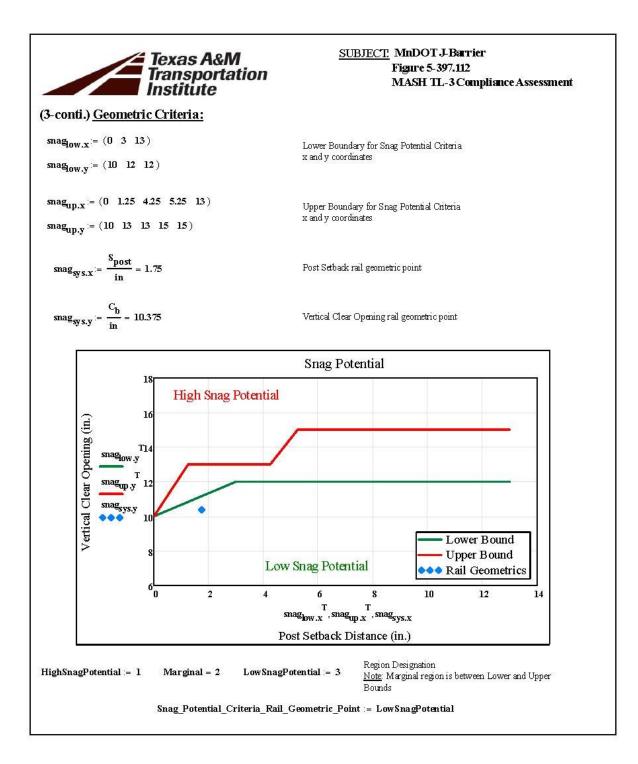
References:

- TL-1 and TL-2 Design Forces are from AASHTO LRFD Section 13 Table A13.2-1
- TL-3 Design Forces are from research conducted under NCHRP Project 20-07 Task 395
- TL-4 (a), TL-4 (b), TL-5 (a), and TL-5 (b) Design Forces are from research conducted under NCHRP Project 22-20(2)

TL := 3 Test Level


F_t:= 71kip


Transverse Impact Force


 $L_t := 4ft$ Longitudinal Length of Distribution of Impact Force

H _e := 19in	Height of Equivalent Transverse Load from top of overlay
H _{min} ≔ 29in	Minimum height of a MASH TL-3 barrier (in.)
$\mathbf{h}_{\mathbf{e}} := \mathbf{H}_{\mathbf{e}} + \mathbf{t}_{0} = 21 \cdot \mathbf{in}$	Total Equivalent Trans. Impact Height
$H_r = 42.625 \cdot in$	Total height of bridge rail system measured from the top of the roadway surface/overlay to the top of highest rail (in.)

Texa Tran Inst	as A&M sportation itute	<u>SUBJECT</u> MnDOT J-Bartier Figure 5-397.112 MASH TL-3 Compliance Assessment
(2) <u>Stability Criteria:</u>		
H _{min} = 29 in	Minimum height of a MASHTL	-3 barrier (in.)
H _r = 42.625 in	Total height of bridge rail system the top of highest rail (in.)	measured from the top of the roadway surface/overlay to
Minimum_Height_of_Barrie	$r_Check := "OK" if H_r ≥"NOT OK" oth$	H _{min} nerwise
м	/linimum_Height_of_Barrier_C	heck = "OK"

B-12

Texas A&M Transportation Institute	<u>SUBJECT</u> MnDOT J-Barrier Figure 5-397.112 MASH TL-3 Compliance Assessment
(3) <u>Geometric Criteria - Summary of Results:</u>	
Post_Setback_Criteria_Check := "'OK'' if Post_Setback_Cr ''NOT OK'' otherwise	iteria_Rail_Geometric_Point = Preferred
Post_Setback_Criteria_Check =	= "NOT OK"
Snag_Potential_Criteria_Check := "OK" if Snag_Potential "NOT OK" otherwise	_Criteria_Rail_Geometric_Point = LowSnagPotential
Snag_Potential_Criteria_Check	= "OK"

(4) LRFD Strength Analysis of the Barrier per AASHTO Section 13 Specifications:

(4a) Bending Capacity of the Wall about the Longitudinal Axis at Midspan: Memid (k-ft/ft)

b_c := 12in

 $A_{vp1.mid} = 0.31 \text{ in}^2$

svp.mid = 12·in

 $\mathbf{A_{vp.mid}} := \left(\frac{\mathbf{b_c}}{\mathbf{s_{vp.mid}}}\right) \cdot \mathbf{A_{vp1.mid}} = 0.31 \cdot \mathbf{in}^2$

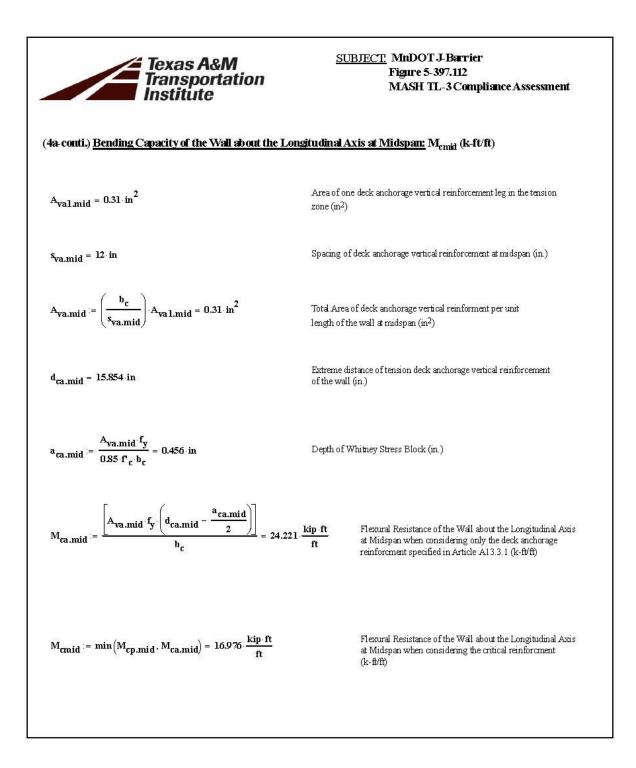
d_{cp.mid} = 11.18 in

 $a_{cp.mid} = \frac{A_{vp.mid} f_y}{0.85 f_c b_c} = 0.456$ in

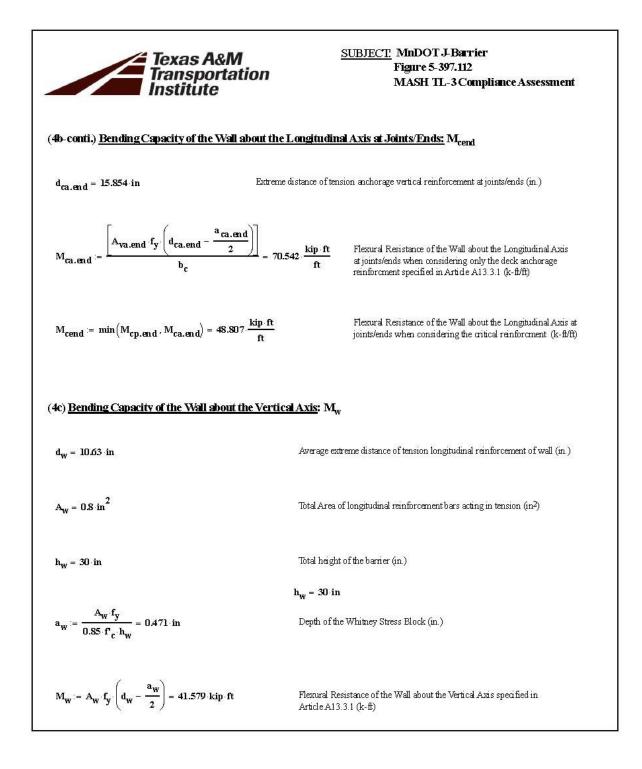
 $M_{cp.mid} := \frac{\left[A_{vp.mid} \cdot f_{y} \cdot \left(d_{cp.mid} - \frac{a_{cp.mid}}{2}\right)\right]}{b_{c}} = 16.976 \cdot \frac{kip \cdot ft}{ft}$ Flexural Resistance of the Wall about the Longitudinal Axis at Midspan when considering only the parapet vertical reinforcement specified in Article A13.3.1 (k-ft/ft)

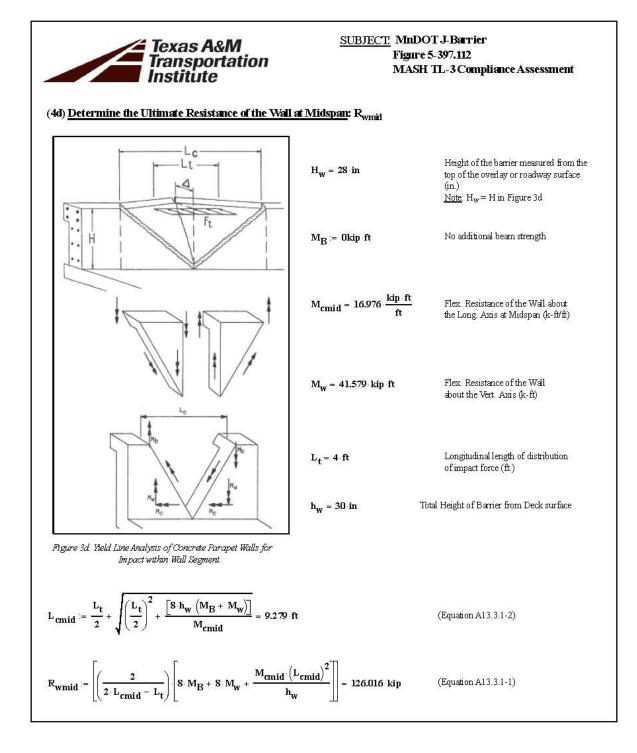
Area of one parapet vertical reinforcement leg in the tension zone (in²)

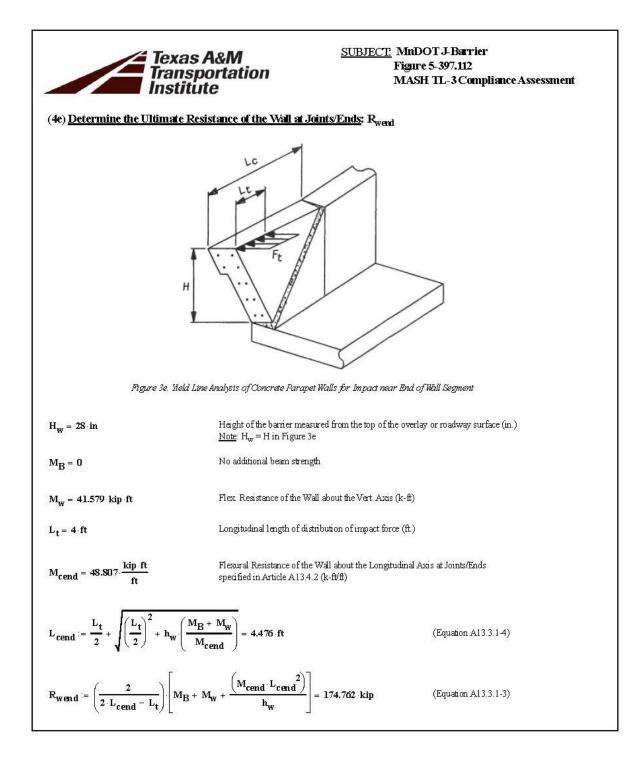
Spacing of parapet vertical reinforcement at midspan (in.)


Note: bc is taken as 1ft per AASHTO Section 13 procedure

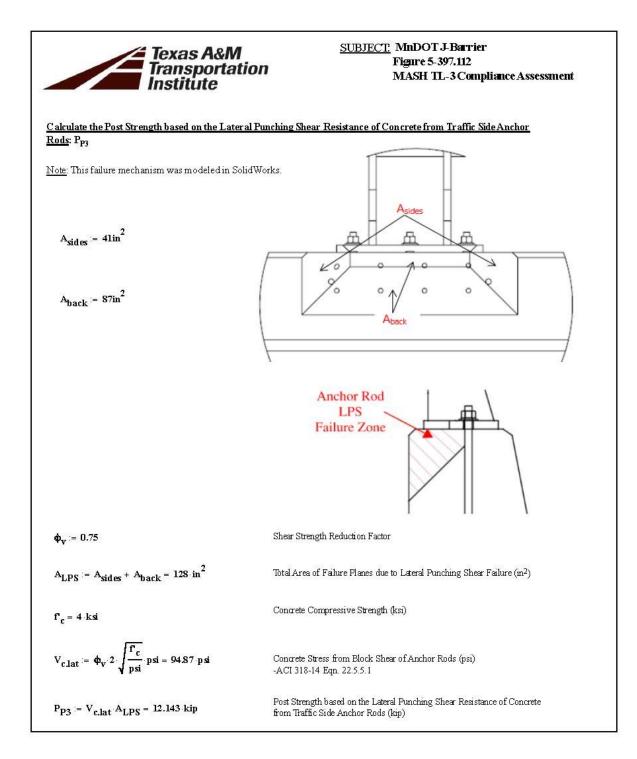
Unit Width of Wall (in.)


Total Area of parapet vertical reinforment per unit length of the wall at midspan (in2)


Average extreme distance of parapet vertical reinforcement in tension (in.)

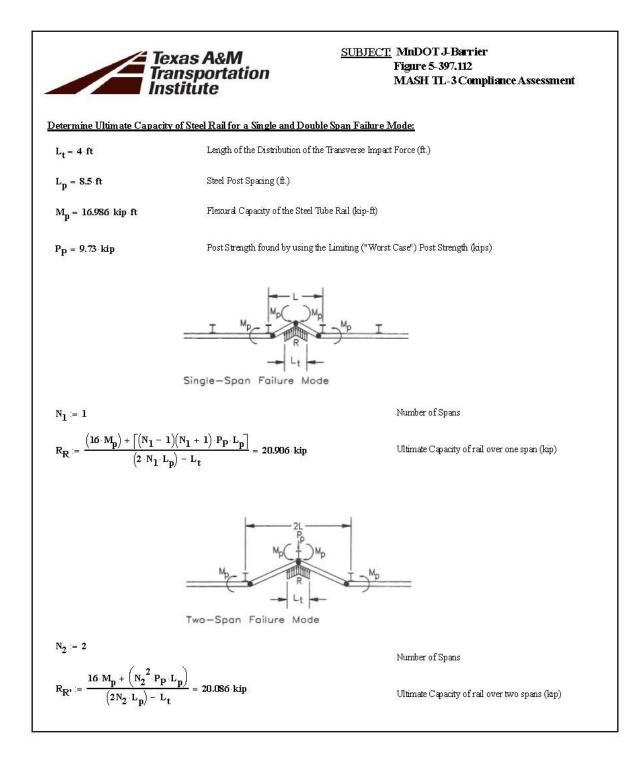

Depth of Whitney Stress Block (in.)

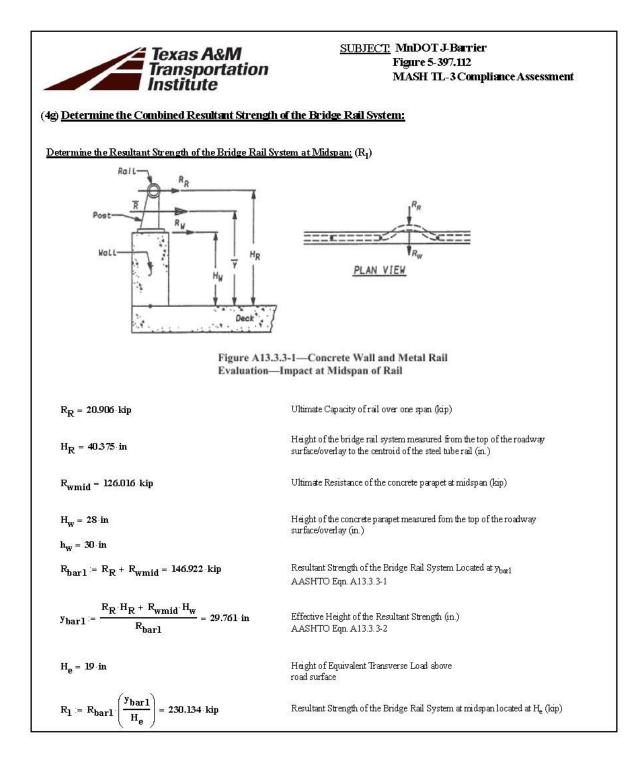
Texas A&M Transportati Institute	SUBJECT MnDOT J-Barrier Figure 5-397.112 MASH TL-3 Compliance Assessment
(4b) <u>Bending Capacity of the Wall about th</u>	<u>e Longitudinal Axis at Joints/Ends</u> M _{ceni}
$b_c = 12$ in	Unit Width of Wall (in.)
$A_{vpl.end} = 0.31 \cdot in^2$	Area of one parapet vertical reinforcement leg in the tension zone at joints/ends (in 2)
s _{vp.end} = 4 · in	Spacing of parapet vertical reinforcement atjoints/ends (in.)
$\mathbf{A_{vp.end}} \coloneqq \left(\frac{\mathbf{b_c}}{\mathbf{s_{vp.end}}}\right) \cdot \mathbf{A_{vp1.end}} = 0.93 \cdot \mathbf{in}^2$	Total Area of parapet vertical reinforment per unit length of the wall at joints/ends (in^2)
$a_{cp.end} = \frac{A_{vp.end} f_y}{0.85 f_c b_c} = 1.368 in$	Depth of Whitney Stress Block (in.)
d _{cp.end} = 11.18 in	Average extreme distance of tension parapet vertical reinforcement at joints/ends (in)
$M_{cp.end} := \frac{\left[A_{vp.end} f_{y} \cdot \left(d_{cp.end} - \frac{a_{cp.end}}{2}\right)\right]}{b_{c}}$	b = 48.807 . kip ft ft Flexural Resistance of the Wall about the Longitudinal Axis at Joints/Ends when considering only the parapet vertical reinforcment specified in Article A13.3.1 (k-ft/ft)
$A_{val.end} = 0.31 \cdot in^2$	Area of one deck anchorage vertical reinforcement leg in the tension zone at joints/ends $(\mathrm{i}n^2)$
s _{va.end} = 4 · in	Spacing of deck anchorage vertical reinforcement at joints/ends (in.)
$\mathbf{A_{va.end}} := \left(\frac{\mathbf{b_c}}{\mathbf{s_{va.end}}}\right) \cdot \mathbf{A_{val.end}} = 0.93 \cdot \mathrm{in}^2$	Total Area of deck anchorage vertical rainforment per unit length of the wall at joints/ends (in^2)
$\mathbf{a}_{ca.end} := \frac{\mathbf{A}_{va.end} \cdot \mathbf{f}_{y}}{0.85 \cdot \mathbf{f}_{c} \cdot \mathbf{b}_{c}} = 1.368 \cdot in$	Depth of Whitney Stress Block (in.)

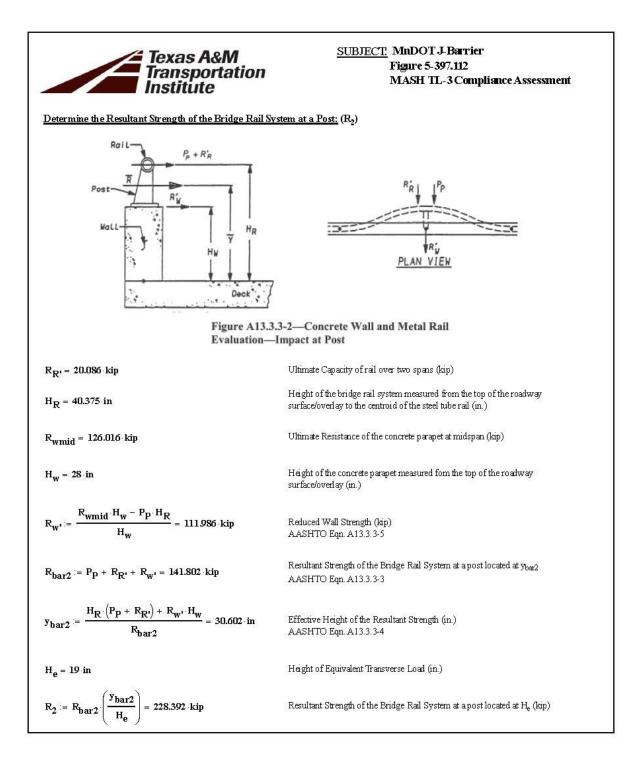


Texas A&M Transportation Institute	<u>SUBJECT</u> MnDOT J-Barrier Figure 5-397.112 MASH TL-3 Compliance Assessment
(41) Steel Rail & Post Strength Analysis:	
F _{yR} = 35 ksi	Yield Strength of Steel Tube Rail (ksi)
d _{0R} = 4.5 in	Outside diameter of Steel Tube Rail (in.)
$d_{iR} = 3.83 \cdot in$	Inside diameter of Steel Tube Rail (in.)
$\mathbf{Z}_{\mathbf{R}} \coloneqq \frac{\left(\mathbf{d_{0R}}^{3} - \mathbf{d_{1R}}^{3}\right)}{6} = 5.824 \cdot \mathbf{in}^{3}$	Plastic Sectional Modulus of the Steel Tube Rail (in ³)
$M_p := F_{yR} \cdot Z_R = 16.986 \cdot kip \cdot ft$	Plastic Moment Capacity of the Steel Tube Rail (kip-ft)
<u>Calculate the Plastic Strength of the Post</u> : P _{Pl}	
$w_p = 10 \cdot in$	Width of Steel Post about the bending axis (in.)
$t_p = 1 \cdot in$	Thickness of Steel Post (in.)
$Z_{\rm p} := \frac{{\rm w_p \cdot t_p}^2}{4} = 2.5 \ {\rm in}^3$	Plastic Sectional Modulus of the Steel Post about the bending axis (in.)
F _{yp} = 36 ksi	Yield Strength of Steel Post (ksi)
$M_{post} = F_{yp} \cdot Z_p = 7.5 \cdot kip \cdot ft$	Plastic Moment Capacity of the Steel Post (kip-ff)
h _p = 9.25 in	Height from the bottom of the post to the centroid of the steel tube rail (in.)
$P_{p1} := \frac{M_{post}}{h_p} = 9.73 \cdot kip$	Post Strength based on the Plastic Failure of a Steel Post (kip)

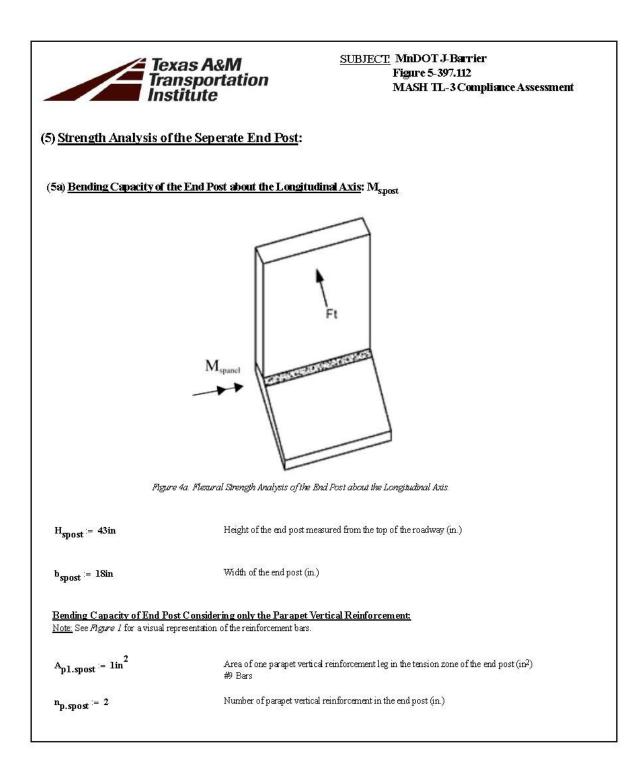
Texas A&M Transportation Institute	<u>SUBJECT</u> MnDOT J-Barrier Figure 5-397.112 MASH TL-3 Compliance Assessment
$\mathrm{\underline{C}}\mathrm{alculate}$ the Post Strength based on the Ultimate Strength	ngth of the Anchor Rods: P _{P2}
F _{u.rod} = 58 ksi	Tensile Strength of the Anchor Rods (ksi)
$\phi_{rod} = 1 \cdot in$	Diameter of Anchor Rods (in)
$A_{rod} := \frac{\pi}{4} \cdot \phi_{rod}^2 = 0.785 \cdot in^2$	Area of a Anchor Rod (in ²)
$R_{nt} := F_{u,rod} \cdot (0.75 \cdot A_{rod}) = 34.165 \cdot kip$	Nominal strength of one Anchor Rod in Tension (kip)
Nrod.tension = 2	Number of Anchor Rods acting in tension
$d_{rod} = 4.75 \cdot in$	Distance from the anchor rods acting in tension to the back of the steel plate (in.)
d _b := 1.5in	Length of the sted plate bearing pressure acting on the concrete parapet $(in.)$
$\mathbf{w_{rod}} := \mathbf{d_{rod}} - \frac{\mathbf{d_b}}{3} = 4.25 \cdot \mathbf{in}$	Distance from anchor rods acting in tension to the centroid of the bearing pressure acting on the concrete parapet (in.)
M _{trod} := w _{rod} · R _{nt} · N _{rod.tension} = 24.2 · kip · ft	Moment strength of Post based on tensile capacity of Anchor Rods (k-ft)
h _p = 9.25 in	Height from the bottom of the post to the centroid of the steel tube rail (in.)
$P_{t,rod} := \frac{M_{t,rod}}{h_p} = 31.395 \cdot kip$	Post Strength based on the tensile capacity of Anchor Rods (kip)
$\mathbf{R_{nv}} \coloneqq \mathbf{F_{u.rod}} \left(0.45 \cdot \mathbf{A_{rod}} \right) = 20.499 \cdot \mathbf{kip}$	Nominal strength of one anchor rod in Shear w/h threads in shear plane (kip)
$P_{v,rod} = N_{rod,shear} R_{nv} = 40.998 kip$	Post Strength based on the shear capacity of Anchor Rods (kip)
$P_{P2} := \min(P_{t,rod}, P_{v,rod}) = 31.395 \text{ kip}$	Post Strength based on the Ultimate Strength of the Anchor Rods (kip)




Determine the Limiting ("Worst Case") Post Strength (kips): P_P


P _{P1} = 9.73 kip	Post Strength based on the Plætic Failure of a Sted Post (kip)
P _{P2} = 31.395 kip	Post Strength based on the Ultimate Strength of the Anchor Rods (kip)
P _{P3} = 12.143 kip	Post Strength based on the Lateral Punching Shear Resistance of Concrete from Traffic Side Anchor Rods (kip)

 $P_{p} := min(P_{p1}, P_{p2}, P_{p3}) = 9.73 \cdot kip$


Post Strength found by using the Limiting ("Worst Case") Post Strength (kips)

Texas A&M Transportation Institute	<u>SUBJECT</u> . MnDOT J-Barrier Figure 5-397.112 MASH TL-3 Compliance Assessment SHTO Section 13 Specifications - Summary of Results:	
$F_t = 71 \text{ kip}$	Transverse Impact Force located at H_e (kip)	
R ₁ = 230.134 kip	Resultant Strength of the Bridge Rail System at midspan located at $\rm H_{e}$ (kip)	
Structural_Capacity_of_Barrier_at_Midspan_Chee	ck := "OK" if $R_1 \ge F_t$ "NOT OK" otherwise	
Structural_Capacity_of_Barrier_at_Midspan_Check = "OK"		
R ₂ = 228.392 kip	Resultant Strength of the Bridge Rail System at a post located at H _e (kip)	
Structural_Capacity_of_Barrier_at_a_Post_Check	$:= \begin{array}{l} "OK" & \text{if } \mathbb{R}_2 \geq F_t \\ "NOT OK" & \text{otherwise} \end{array}$	
Structural_Capacity_of_Barrier_at_a_Post_Check = ''OK''		

Texas A Transpo Institute	&M rtation e	<u>SUBJECT</u> : MnDOT J-Barrier Figure 5-397.112 MASH TL-3 Compliance Assessment	
(5a-conti.) <u>Bending Capacity of the End Post about the Longitudinal Axis</u> : M _{spost}			
$A_{p.spost} = n_{p.spost} A_{p1.spost} = 2 \cdot in^2$	Total Are post (in ²)	a of parapet vertical reinforment in the tension zone of the end	
$a_{p.spost} = \frac{A_{p.spost} f_y}{0.85 f_c b_{spost}} = 1.961$ in	Depth of	the Whitney Stress Block (in.)	
dp.spost := 9.75in Average extreme distance of tension parapet vertical reinforcement in the end post (in.)			
$\mathbf{M}_{\mathbf{p}.\mathbf{spost}} := \mathbf{A}_{\mathbf{p}.\mathbf{spost}} \cdot \mathbf{f}_{\mathbf{y}} \left(\mathbf{d}_{\mathbf{p}.\mathbf{spost}} - \frac{\mathbf{a}}{\mathbf{a}} \right)$	$\left(\frac{\mathbf{p} \cdot \mathbf{sp ost}}{2}\right) = 87.696 \cdot \mathbf{kip} \cdot \mathbf{ft}$	Flexural Capacity of the End Post about the Longitudinal Axis when considering only the parapet vertical reinforcment (kip-ft)	
Bending Capacity of End Post Considering only the Deck Anchorage Vertical Reinforcement: Note: See <i>Rigure 1</i> for a visual representation of the reinforcement bars.			
$A_{al.spost} = 1.27 in^2$	Area of one anchorage vertical #10 Bars	reinforcement leg in the tension zone in the end post (in^2)	
n _{a.spost} := 2	Number of anchorage vertical r	einforcement in the end post (in.)	
A _{a.spost} = n _{a.spost} A _{al.spost} = 2.54 i	n ² Total Are of the end	a of deck anchorage vertical reinforment in the tension zone $\rm lpost~(in^2)$	
$a_{a.spost} = \frac{A_{a.spost} f_y}{0.85 f_c b_{spost}} = 2.49$ in	Depth of	the Whitney Stress Block (in.)	
d _{a.spost} := 16in	Extreme distance of tension dec	ik anchorage vertical reinforcement in the end post (in.)	
$M_{a.spost} := A_{a.spost} f_y \left(d_{a.spost} - \frac{a_s}{a_s} \right)$	$\left(\frac{a.spost}{2}\right) = 187.387 \text{ kip ft}$	Flexural Capacity of the End Post about the Longitudinal Axis when considering only the deck anchorage vertical reinforcment (kip-ft)	
$\mathbf{M}_{s,post} \coloneqq \min \left(\mathbf{M}_{p,spost}, \mathbf{M}_{a,spost} \right) =$	87.696 kip ft	Flexural Resistance of the End Post about the Longitudinal Axis when considering the critical reinforcment (k-fl/ft)	

(5a) Bending Capacity of the End Post about the Longitudinal Axis-Summary of Results:

$H_e = 19 \cdot in$ $h_e = 21 \cdot in$	Height of the Transverse Impact Force, $F_t(in.)$
M _{s.p.ost} = 87.696 kip ft	Flexural Resistance of the End Post about the Longitudinal Axis when considering the critical reinforcment (k-ft/ft)

 $R_{s,post} := \frac{M_{s,post}}{h_e} = 50.112 \text{ kip}$

 $F_t = 71 \cdot kip$

Transverse Impact Force located at H_e (kip)

Structural Capacity of the End Post located at H_e (kip)

 $L_t = 4 ft$

Distribution Length of the Impact Force (ft.)

 $Structural_Capacity_of_End_Post_Check := \left(\begin{array}{ccc} "OK" & if \ R_{s,post} \ge F_t \\ "NOT \ OK" & otherwise \end{array} \right)$

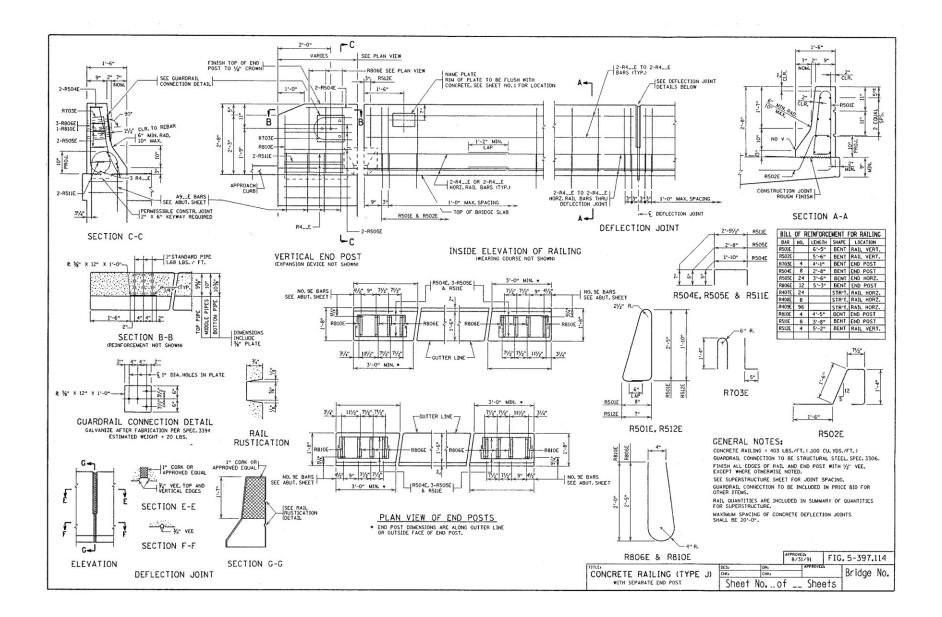
Structural_Capacity_of_End_Post_Check = "NOT OK"

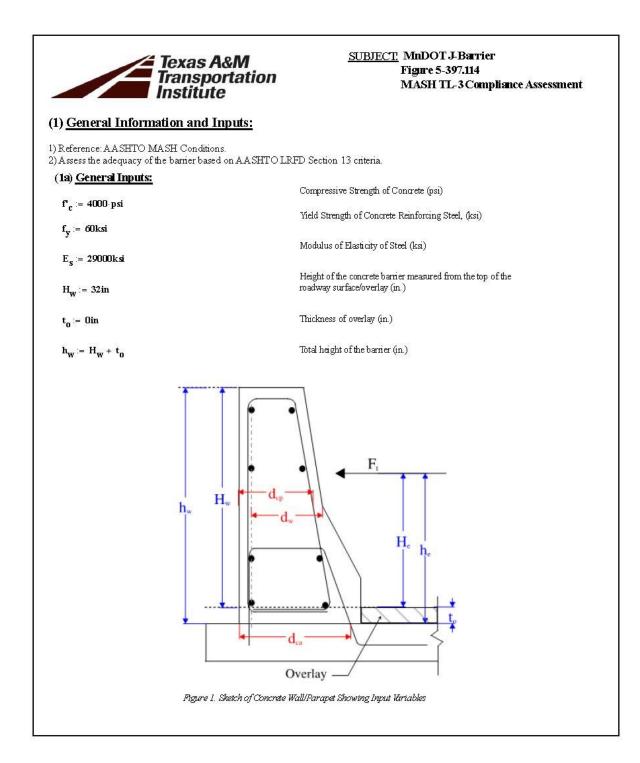
(6) Conclusions:

Minimum_Height_of_Barrier_Check = "OK"

Post_Setback_Criteria_Check = "NOT OK"

Snag_Potential_Criteria_Check = "OK"


Structural_Capacity_of_Barrier_at_Midspan_Check = "OK"


Structural_Capacity_of_Barrier_at_a_Post_Check = "OK"

Structural_Capacity_of_End_Post_Check = "NOT OK"

The J-Barrier from Figure 5-397.112 does not satisfy all MASH TL-3 Criteria

APPENDIX B2: J BARRIER ON FIGURE 5-397.114

Texas A Transpor Institute	SUBJECT: MnDOT J-Barrier Figure 5-397.114 Figure 5-397.114 MASH TL-3 Compliance Assessment Master TL-3 Compliance Assessment
(1b) <u>Concrete Parapet Inputs:</u>	
Parapet Vertical Reinforcement Inputs:	
$A_{vp1.mid} = 0.31in^2$	Area of one parapet vertical reinforcement leg in the tension zone at midspan (in ²)
s _{vp.mid} := 12in	Spacing of parapet vertical reinforcement at midspan (in.)
d _{cp.mid} := 8.19in	Extreme distance of parapet vertical reinforcement in tension at midspan (in.)
A _{vpl.end} = 0.31in ²	Area of one parapet vertical reinforcement leg in the tension zone at joints/ends (in^2)
s _{vp.end} = 8in	Spacing of parapet vertical reinforcement at joints/ends (in.). Averaged over 4 feet
d _{cp.end} = 8.19in	Extreme distance of tension parapet vertical reinforcement at joints/ends (in.)
Longitudinal Reinforcement Inputs:	
$A_w = 0.8in^2$	Area of longitudinal reinforcement bars in tension (in^2)
d _w := 8.5in	Extreme distance of tension longitudinal reinforcement of wall (in.)

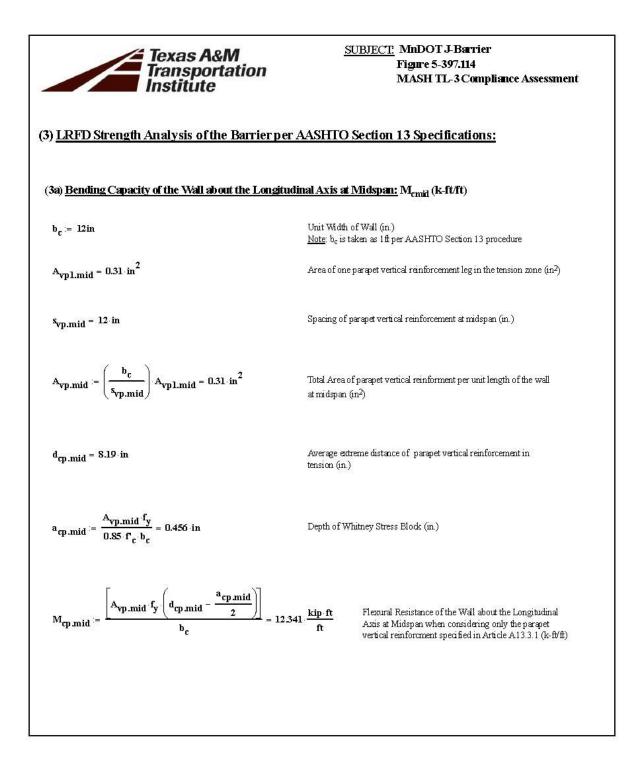
Texas A Transpo Institute	SUBJECT: MnDOT J-Barrier Figure 5-397.114 Figure 5-397.114 Drtation MASH TL-3 Compliance Assessment e E					
(1b-conti.) <u>Concrete Parapet Inputs:</u>						
DeckAnchorage Vertical Reinforceme	ent Inputs:					
Lproj_R502E = 10in	Projected length of R502E reinforcement over the slab (in.)					
^L wid_R502 E ¹⁼ 7.5in	Outer width of R502E reinforcement (in.)					
Cover := 2in	Cover clear distance (in.)					
$\text{Ratio}_{\text{R502E}} \coloneqq \frac{5}{12}$	Inclined angle of R502E reinforcement					
d _{b_R502E} := 0.625 in	Nominal diameter of R502E rainforcement (#5 bar)					
d _{ca} ∵= ^L wid_R502E ^{+ L} proj_R502E	$d_{ca} := L_{wid}_{R502E} + L_{proj}_{R502E} + Ratio_{R502E} + Cover - \frac{1}{2} d_{b}_{R502E} = 13.354$ in					
	Extreme distance of tension deck anchorage vertical reinforcement (in,)					
$A_{val.mid} = 0.31in^2$	Area of one deck anchorage vertical reinforcement leg in the tension zone at midspan (in^2)					
s _{va.mid} = 12in	Spacing of deck anchorage vertical reinforcement at midspan (in.)					
$\mathbf{d_{ca.mid}} \coloneqq \mathbf{d_{ca}} = 13.354 \cdot \mathbf{in}$	Extreme distance of tension deck anchorage vertical reinforcement of the wall at midspan(in.)					
$A_{val.end} = 0.3 lin^2$	Area of one deck anchorage vertical reinforcement leg in the tension zone at joints/ends (in ²)					
s _{va.end} := 8in	Spacing of deck anchorage vertical rainforcement at joints/ends (in.). Averaged over 4 feet					
$\mathbf{d}_{ca.end} := \mathbf{d}_{ca} = 13.354$ in	Extreme distance of tension deck anchorage vertical reinforcement at joints/ends (in.)					

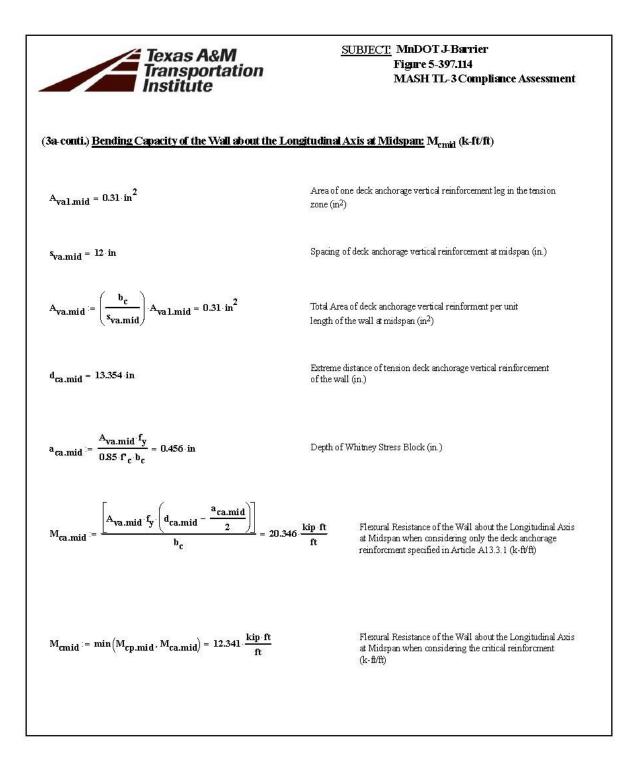
<u>SUBJECT</u> MnDOT J-Barrier Figure 5-397.114 MASH TL-3 Compliance Assessment

(1c) Design Force Inputs:

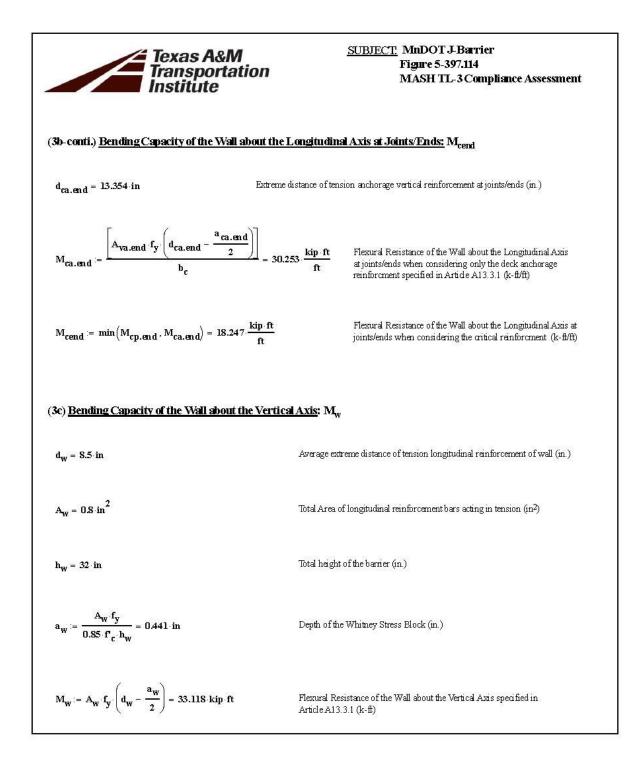
Design Forces for Traffic Railings

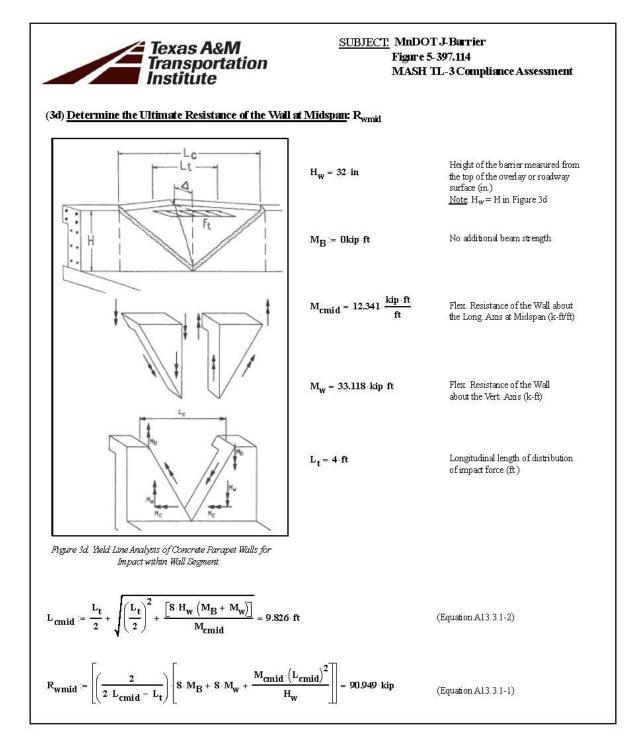
Test Level	Rail Height (in.)	Ft (kip)	FL (kip)	Fv (kip)	Lt/L1 (ft)	Lv (ft)	He (in)	Hmin (in)
TL-1	18 or above	13.5	4.5	4.5	4.0	18.0	18.0	18.0
TL-2	18 or above	27.0	9.0	4.5	4.0	18.0	20.0	18.0
TL-3	29 or above	71.0	18.0	4.5	4.0	18.0	19.0	29.0
TL-4 (a)	36	68.0	22.0	38.0	4.0	18.0	25.0	36.0
TL-4 (b)	between 36 and 42	80.0	27.0	22.0	5.0	18.0	30.0	36.0
TL-5 (a)	42	160.0	41.0	80.0	10.0	40.0	35.0	42.0
TL-5 (b)	greater than 42	262.0	75.0	160.0	10.0	40.0	43.0	42.0
TL 6		175.0	58.0	80.0	8.0	40.0	56.0	90.0

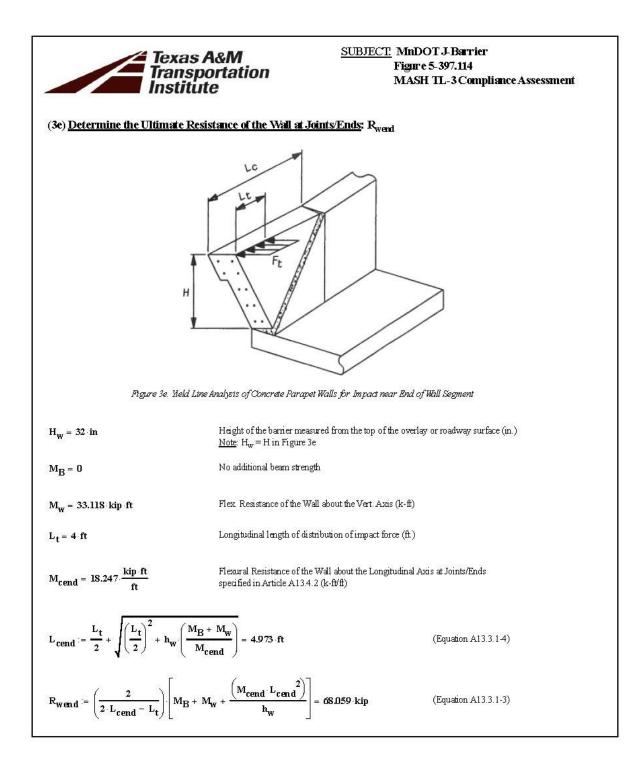

References:

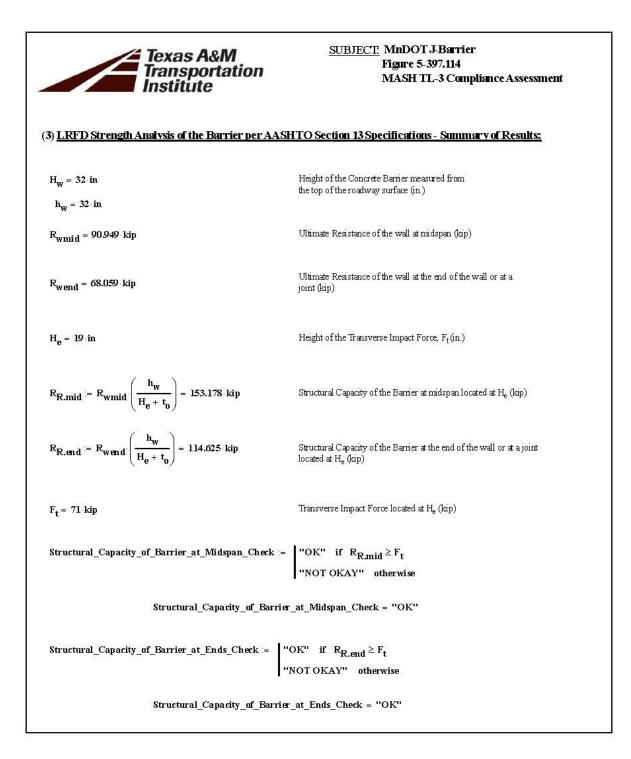

- TL-1 and TL-2 Design Forces are from AASHTO LRFD Section 13 Table A13.2-1
- TL-3 Design Forces are from research conducted under NCHRP Project 20-07 Task 395

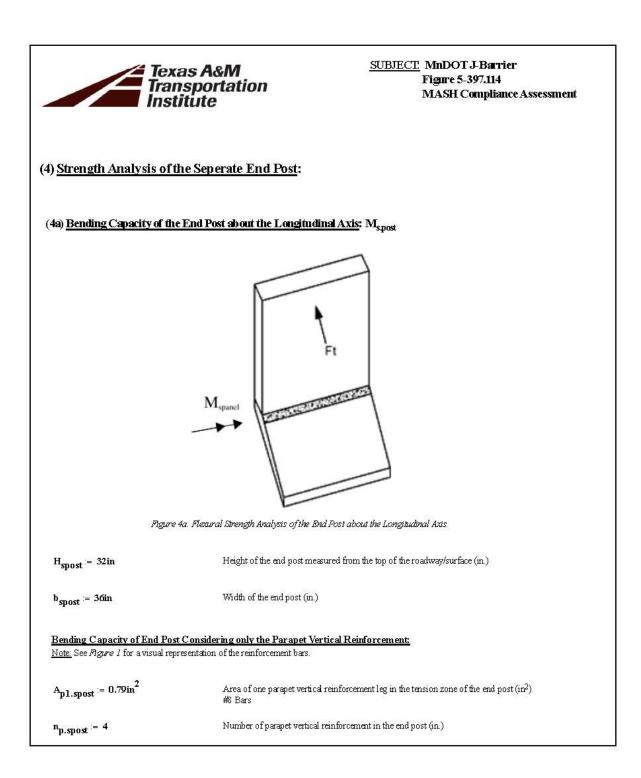
•	TL-4 (a), TL-4 (b), TL-5 (a), and TL-5 (b) Design Forces are from research conducted under
	NCHRP Project 22-20(2)

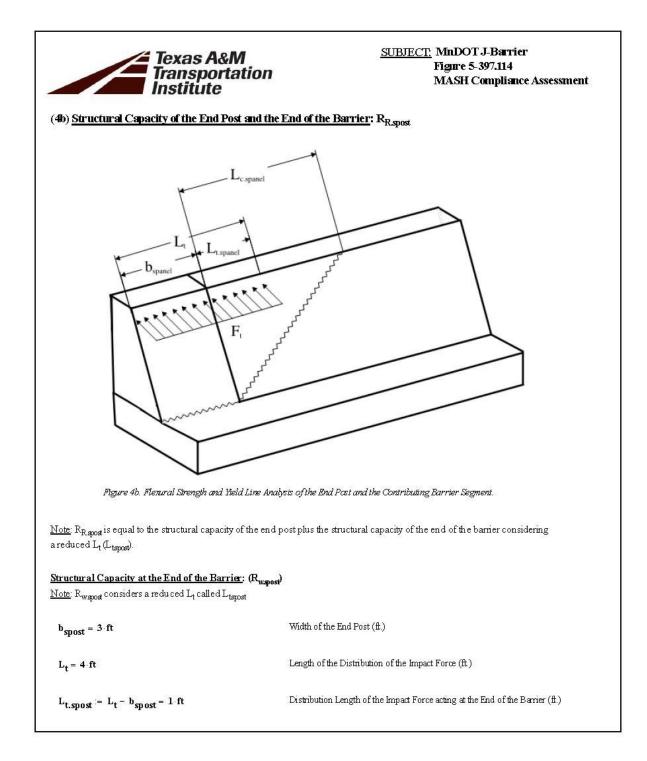

TL := 3	Test Level
F _t = 71kip	Transverse Impact Force
$L_t := 4ft$	Longitudinal Length of Distribution of Impact Force
H _e := 19in	Height of Equivalent Transverse Load
H _{min} := 29in	Minimum height of a MASH TL-3 barrier (in.)
H _w = 32 in	Height of the concrete barrier measured from the top of the roadway surface/overlay (in.)
$h_w = 32 \cdot in$	Total height of barrier (in.)

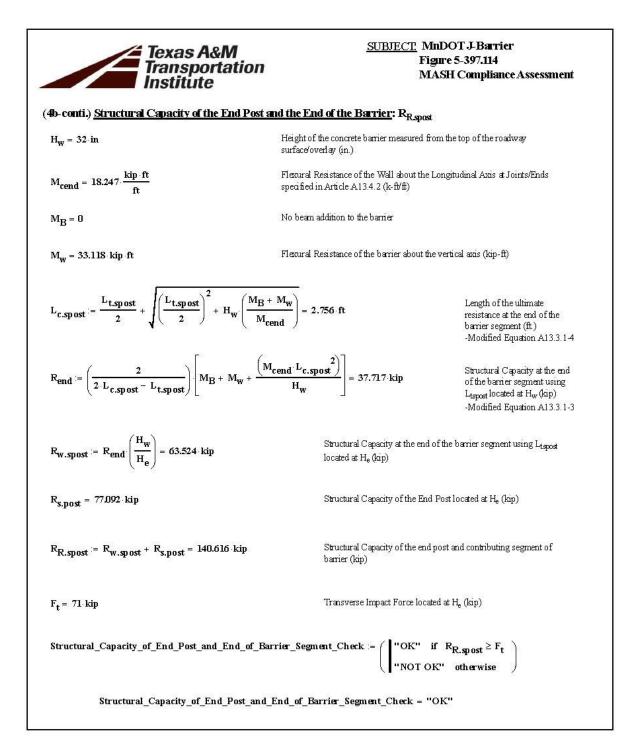

Tex Trains	as A&M nsportation titute	<u>SUBJECT</u> MnDOT J-Barrier Figure 5-397.114 MASH TL-3 Compliance Assessment
(2) <u>Stability Criteria:</u>		
H _{min} = 29∙in	Minimum height of a MASHTL-3 barrier	(in.)
H _w = 32 ⋅in	Height of the concrete barrier measured fro	om the top of the roadway surface/overlay (in.)
Minimum_Height_of_Barr	ier_Check := "OK" if H _w ≥ H _{min} "NOT OKAY" otherw	rise
	Minimum_Height_of_Barrier_Check =	"OK"

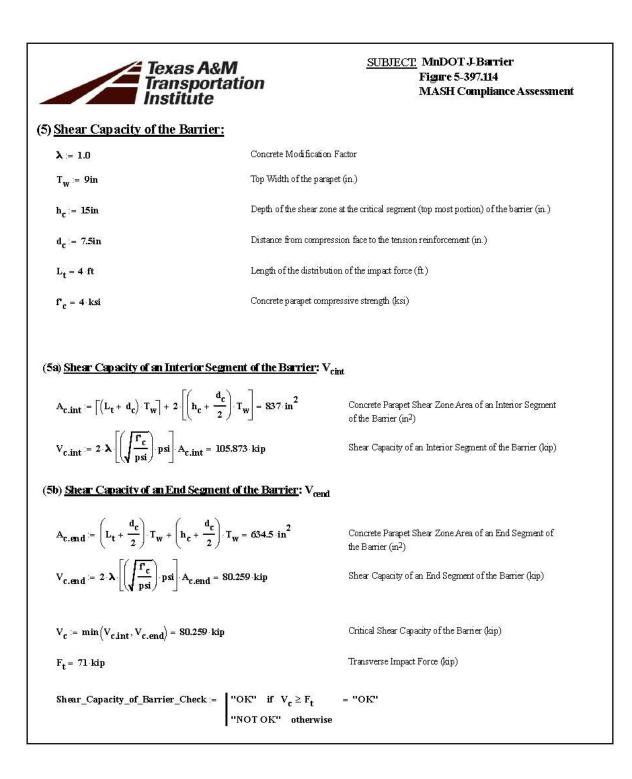


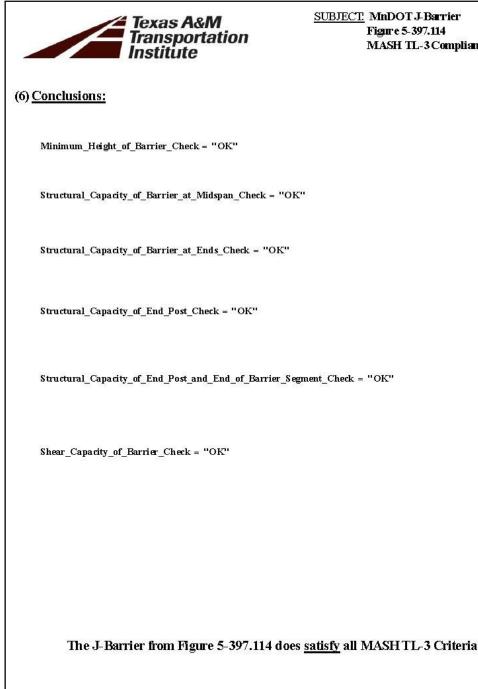

Texas A&M Transportatio Institute	SUBJECT: MnDOT J-Barrier Figure 5-397.114 MASH TL-3 Compliance Assessment
(3b) <u>Bending Capacity of the Wall about the</u>	e Longitudinal Axis at Joints/Ends. M _{cent}
$\mathbf{b}_{\mathbf{c}} = 12 \cdot \mathbf{in}$	Unit Width of Wall (n.)
$A_{vpl.end} = 0.31 \text{ in}^2$	Area of one parapet vertical reinforcement leg in the tension zone at joints/ends (in ²)
s _{vp.end} = 8 in	Average Spacing of parapet vertical reinforcement at joints/ends (in.) over 4.0 feet.
$\mathbf{A_{vp,end}} = \left(\frac{\mathbf{b_c}}{\mathbf{s_{vp,end}}}\right) \cdot \mathbf{A_{vp1,end}} = 0.465 \cdot \ln^2$	Total Area of parapet vertical reinforment per unit length of the wall at joints/ends (in ²)
$\mathbf{a}_{cp.end} := \frac{\mathbf{A}_{vp.end} \cdot \mathbf{f}_y}{0.85 \cdot \mathbf{f}_c \cdot \mathbf{b}_c} = 0.684 \cdot \mathbf{i}\mathbf{n}$	Depth of Whitney Stress Block (in.)
d _{cp.en.d} = 8.19 in	Average extreme distance of tension parapet vertical reinforcement at joints/ends (in.)
$M_{cp.end} := \frac{\left[A_{vp.end}, f_{y}: \left(d_{cp.end} - \frac{a_{cp.end}}{2}\right)\right]}{b_{c}}$	= 18.247. kip ft ft Flexural Resistance of the Wall about the Longitudinal Axis at Joints/Ends when considering only the parapet vertical reinforcment specified in Article A13.3.1 (k-fb/ff)
$A_{val.end} = 0.31 \cdot in^2$	Area of one deck anchorage vertical reinforcement leg in the tension zone at joints/ends (in ²)
s _{va.end} = 8·in	Spacing of deck anchorage vertical reinforcement at joints/ends (in.)
$\mathbf{A_{va.end}} := \left(\frac{\mathbf{b_c}}{\mathbf{s_{va.end}}}\right) \cdot \mathbf{A_{val.end}} = 0.465 \cdot \ln^2$	Total Area of deck anchorage vertical reinforment per unit length of the wall at joints/ends (in^2)
$a_{ca.end} = \frac{A_{va.end} f_y}{0.85 f_c b_c} = 0.684 in$	Depth of Whitney Stress Block (in.)

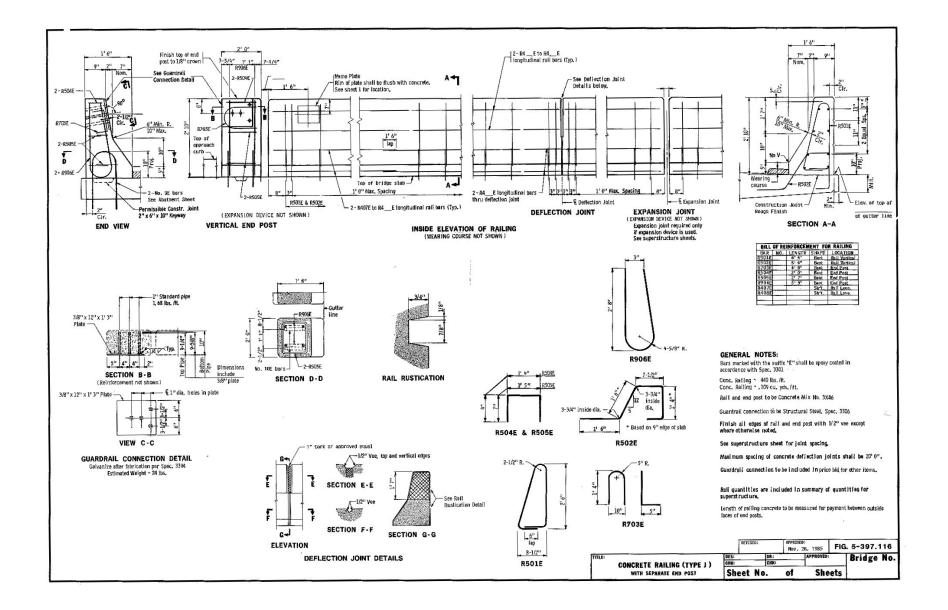


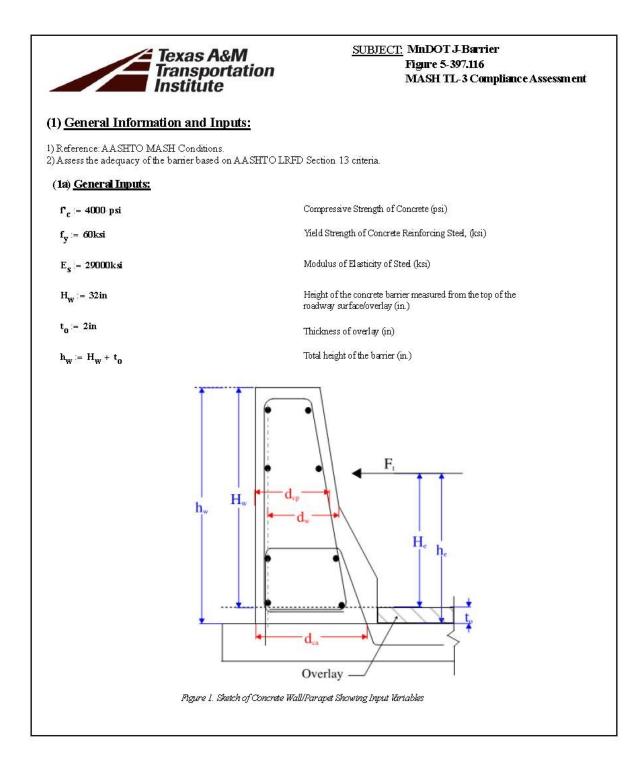





B-44







SUBJECT. MnDOT J-Barrier Figure 5-397.114 MASH TL-3 Compliance Assessment APPENDIX B3: J BARRIER ON FIGURE 5-397.116

Texas A Transpo Institute	& SUBJECT: MnDOT J-Barrier Figure 5-397.116 Figure 5-397.116 MASH TL-3 Compliance Assessment MASH TL-3 Compliance Assessment
(1b) <u>Concrete Parapet Inputs:</u>	
Parapet Vertical Reinforcement Inputs:	8
$A_{vp1.mid} = 0.31in^2$	Area of one parapet vertical reinforcement leg in the tension zone at midspan (in^2)
^s vp.mid ^{:=} 12in	Spacing of parapet vertical reinforcement at midspan (in.)
d _{cp.mid} := 9in	Extreme distance of parapet vertical reinforcement in tension at midspan (in.)
A _{vpl.end} = 0.31in ²	Area of one parapet vertical reinforcement leg in the tension zone at joints/ends (in ²)
s _{vp.end} = 12in	Spacing of parapet vertical reinforcement at joints/ends (in.)
d _{cp.end} := 9in	Extreme distance of tension parapet vertical reinforcement at joints/ends (in.)
Longitudinal Reinforcement Inputs:	
A _w := 0.8in ²	Area of longitudinal reinforcement bars in tension (in^2)
d _W ≔ 8.125in	Extreme distance of tension longitudinal reinforcement of wall (in.)

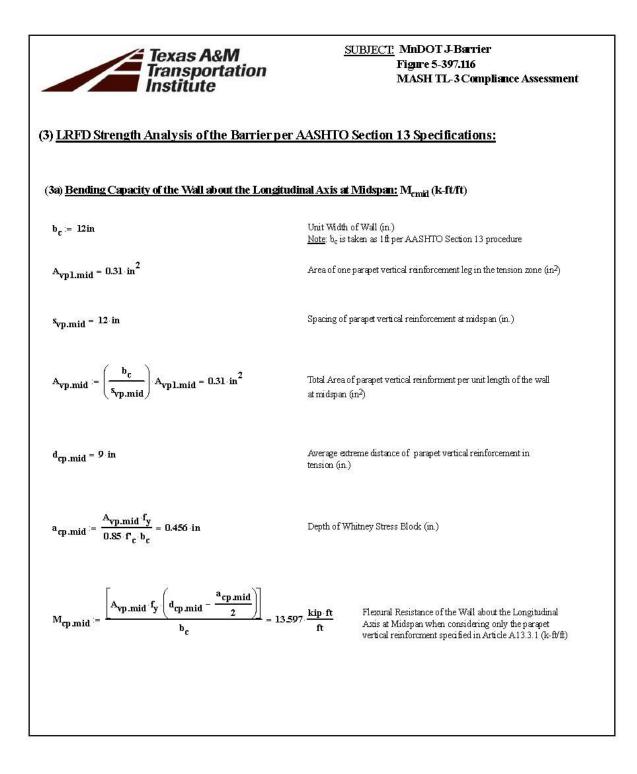
Texas As Transpor Institute	SUBJECT: MnDOT J-Barrier Figure 5-397.116 Figure 5-397.116 MASH TL-3 Compliance Assessment
(1b-conti.) <u>Concrete Parapet Inputs:</u>	
Deck Anchorage Vertical Reinforcemen	<u>it Inputs:</u>
L _{proj_R502E} = 10in	Projected length of R502E reinforcement over the slab (in.)
$L_{wid}_{R502E} = 7.5in$	Outer width of R502E reinforcement (in.)
Cover := 2in	Cover clear distance (in.)
$Ratio_{R502E} = \frac{5}{12}$	Inclined angle of R502E reinforcement
^d b_R502E := 0.625 in	Nominal diameter of R502E reinforcement (#5 bar)
d _{ca} := L _{wid_} R502E + L _{proj_} R502E	Ratio _{R502E} + Cover - $\frac{1}{2}$ d _{b_R502E} = 13.354 in
	Extreme distance of tension deck anchorage vertical reinforcement (in,)
$A_{val.mid} = 0.31in^2$	Area of one deck anchorage vertical reinforcement leg in the tension zone at midspan (n^2)
s _{va.mid} = 12in	Spacing of deck anchorage vertical reinforcement at midspan (in.)
$d_{ca.mid} = d_{ca} = 13.354$ in	Extreme distance of tension deck anchorage vertical reinforcement of the wall at midspan(in.)
$A_{val.end} = 0.3 lin^2$	Area of one deck anchorage vertical reinforcement leg in the tension zone at joints/ends (m^2)
s _{va.end} = 12in	Spacing of deck anchorage vertical reinforcement at joints/ends (in.)
$\mathbf{d_{ca.end}} \coloneqq \mathbf{d_{ca}} = 13.354$ in	Extreme distance of tension deck anchorage vertical reinforcement at joints/ends (in.)

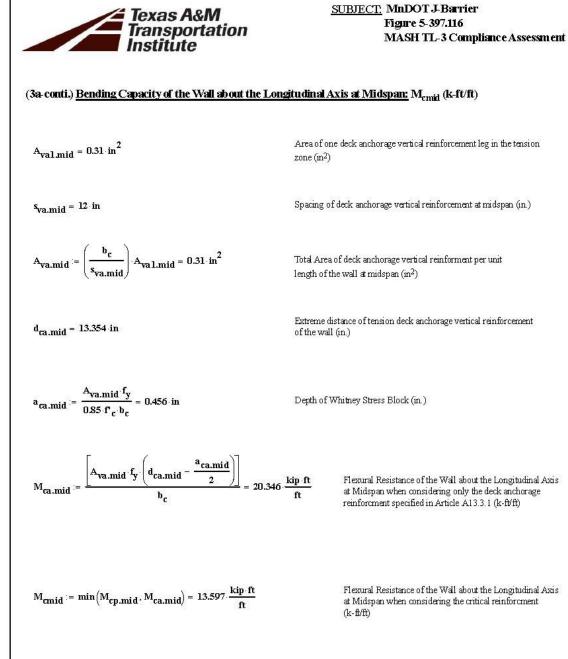
<u>SUBJECT</u> MnDOT J-Bartier Figure 5-397.116 MASH TL-3 Compliance Assessment

(1c) Design Force Inputs:

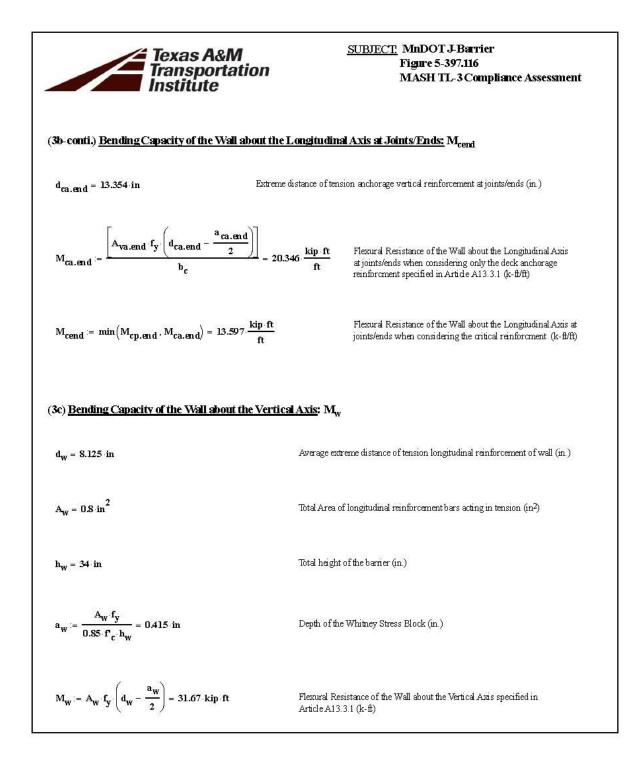
Design Forces for Traffic Railings

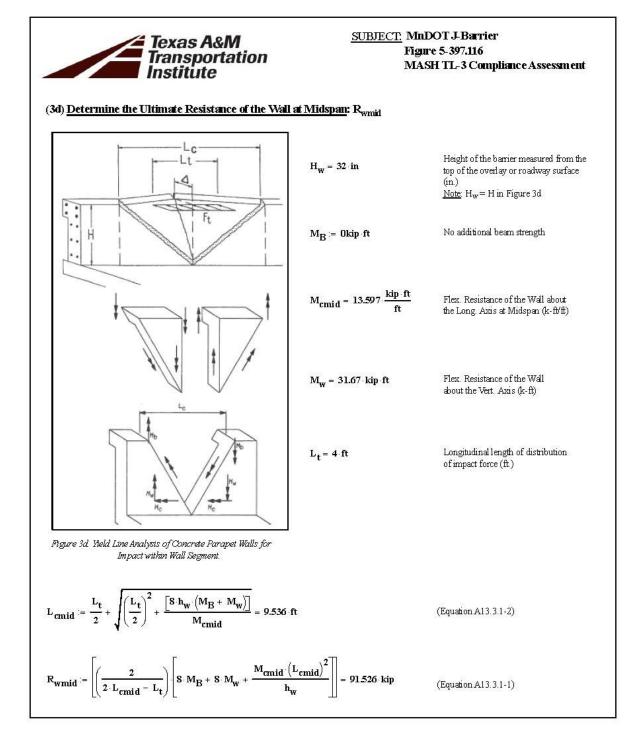
Test Level	Rail Height (in.)	Ft (kip)	FL (kip)	Fv (kip)	Lt/LL (ft)	Lv (ft)	He (in)	Hmin (in)
TL-1	18 or above	13.5	4.5	4.5	4.0	18.0	18.0	18.0
TL-2	18 or above	27.0	9.0	4.5	4.0	18.0	20.0	18.0
TL-3	29 or above	71.0	18.0	4.5	4.0	18.0	19.0	29.0
TL-4 (a)	36	68.0	22.0	38.0	4.0	18.0	25.0	36.0
TL-4 (b)	between 36 and 42	80.0	27.0	22.0	5.0	18.0	30.0	36.0
TL-5 (a)	42	160.0	41.0	80.0	10.0	40.0	35.0	42.0
TL-5 (b)	greater than 42	262.0	75.0	160.0	10.0	40.0	43.0	42.0
TL6		175.0	58.0	80.0	8.0	40.0	56.0	90.0

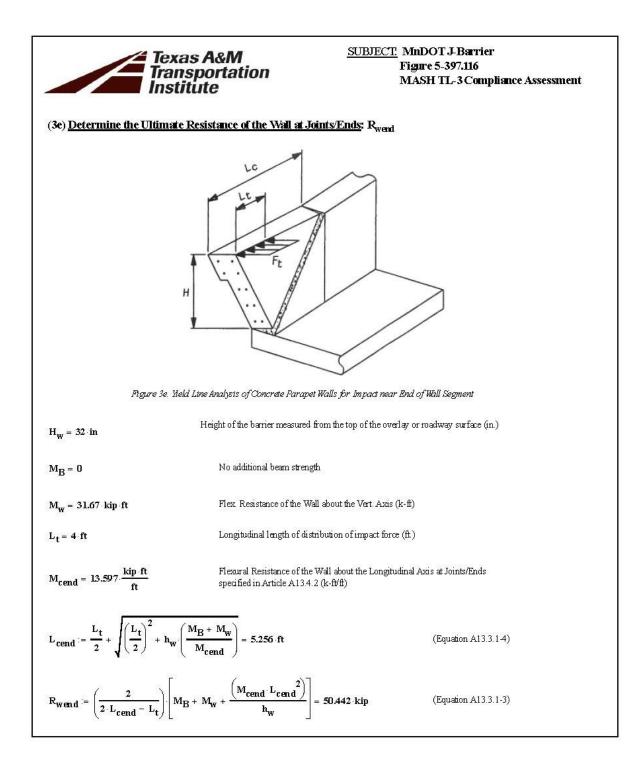

References:


- TL-1 and TL-2 Design Forces are from AASHTO LRFD Section 13 Table A13.2-1
- TL-3 Design Forces are from research conducted under NCHRP Project 20-07 Task 395

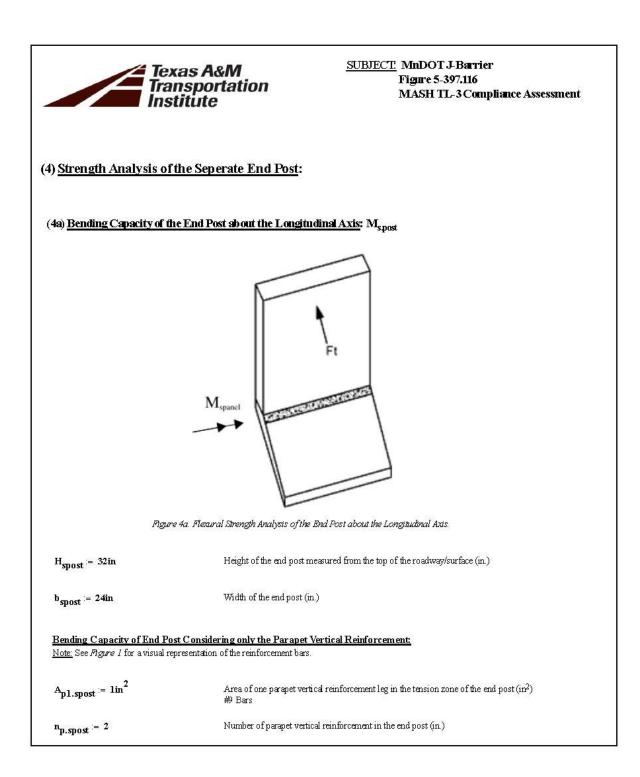
•	TL-4 (a), TL-4 (b), TL-5 (a), and TL-5 (b) Design Forces are from research conducted under
	NCHRP Project 22-20(2)

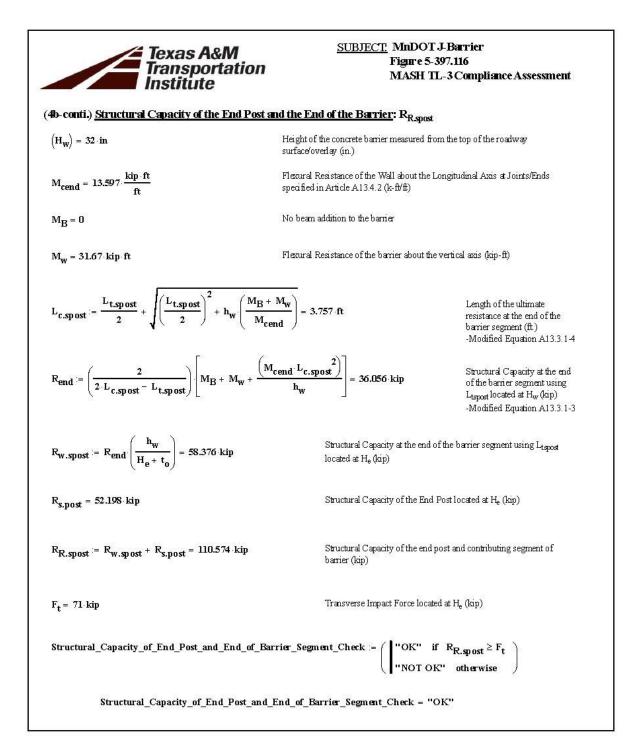

TL := 3	Test Level
F _t := 71kip	Transverse Impact Force
$L_t := 4ft$	Longitudinal Length of Distribution of Impact Force
H _e ≔ 19in	Height of Equivalent Transverse Load from top of overlay
$\mathbf{h}_{\mathbf{e}} := \mathbf{H}_{\mathbf{e}} + \mathbf{t}_{0}$	Total equivalent transverse impact height (in.)
H _{min} := 29in	Minimum height of a MASH TL-3 barrier (in.)
H _w = 32 in	Height of the concrete barrier measured from the top of the roadway surface/overlay (in.)

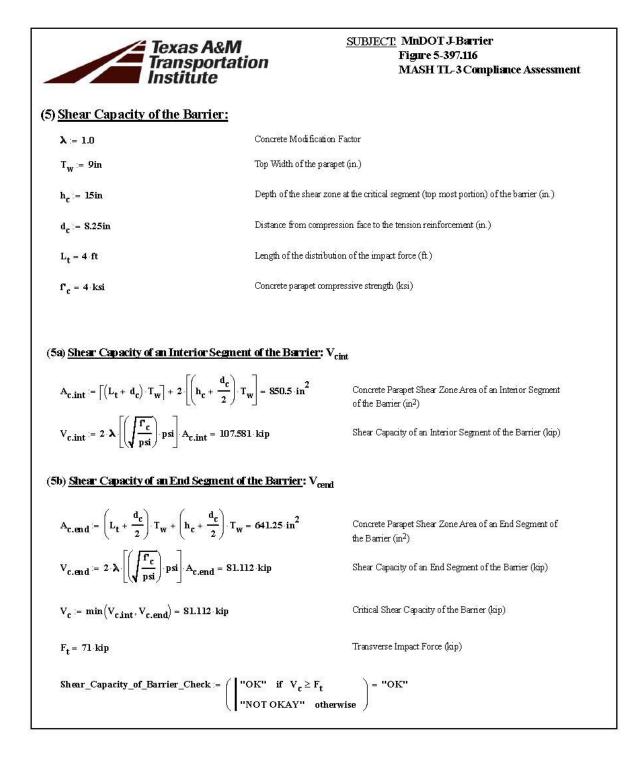

Texa Tran Inst	as A&M sportation itute	<u>SUBJECT.</u> MnDOT J-Barrier Figure 5-397.116 MASH TL-3 Compliance Assessment
(2) <u>Stability Criteria:</u>		
H _{min} = 29 in	Minimum height of a MASHTL-3 ban	ier (m.)
H _w = 32·in	Height of the concrete barrier measured	from the top of the roadway surface/overlay (in.)
$\begin{aligned} & \text{Minimum}_\text{Height}_\text{of}_\text{Barrier}_\text{Check} := & \text{"OK" if } H_W \geq H_{\min} \\ & \text{"NOT OKAY" otherwise} \end{aligned}$		
Minimum_Height_of_Barrier_Check = "OK"		

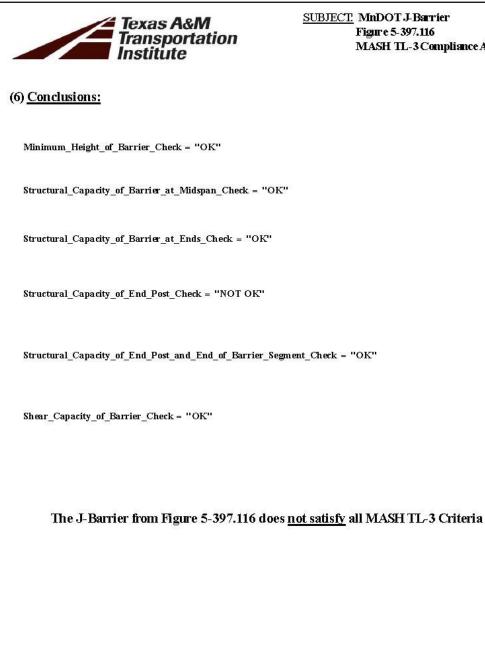


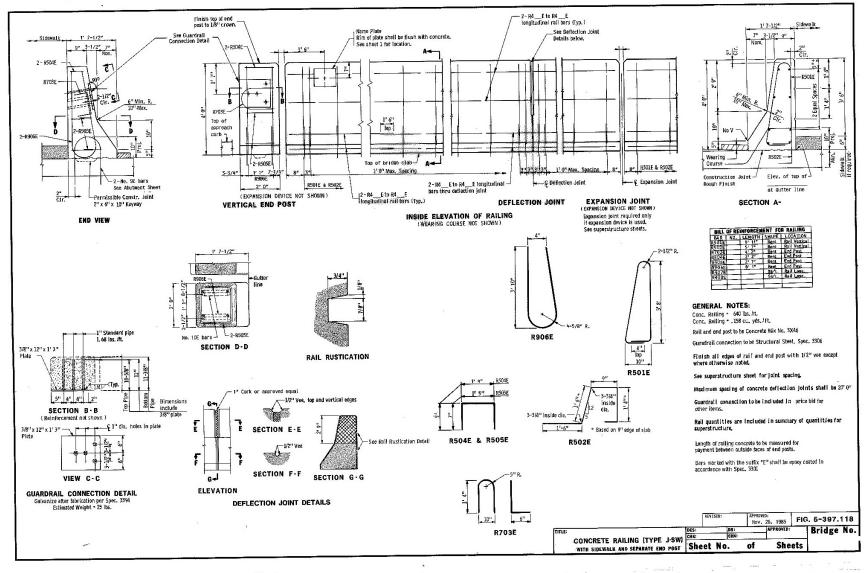
Texas A&M Transportat Institute	SUBJECT: MnDOT J-Barrier Figure 5-397.116 Figure 5-397.116 MASH TL-3 Compliance Assessment	
(3b) <u>Bending Capacity of the Wall about the Longitudinal Axis at Joints/Ends.</u> M _{cend}		
$b_c = 12 \cdot in$	Unit Width of Wall (in.)	
$A_{vpl.end} = 0.31 \cdot in^2$	Area of one parapet vertical reinforcement leg in the tension zone at joints/ends (in 2)	
$s_{vp.end} = 12 in$	Spacing of parapet vertical reinforcement at joints/ends (in.)	
$\mathbf{A_{vp.end}} \coloneqq \left(\frac{\mathbf{b_c}}{\mathbf{s_{vp.end}}}\right) \cdot \mathbf{A_{vp1.end}} = 0.31 \cdot \mathrm{in}^2$	Total Area of parapet vertical reinforment per unit length of the wall at joints/ends (in^2)	
$\mathbf{a}_{cp,end} = \frac{\mathbf{A}_{vp,end} \cdot \mathbf{f}_y}{0.85 \cdot \mathbf{f}_c \cdot \mathbf{b}_c} = 0.456 \cdot \mathbf{in}$	Depth of Whitney Stress Block (in.)	
$d_{cp.end} = 9 \cdot in$	Average extreme distance of tension parapet vertical reinforcement at joints/ends (in)	
$M_{cp.end} := \frac{\left[A_{vp.end} \cdot f_{y} \cdot \left(d_{cp.end} - \frac{a_{cp.en}}{2}\right)\right]}{b_{c}}$	$\frac{\mathbf{nd}}{\mathbf{ft}} = 13.597 \cdot \frac{\mathbf{kip} \cdot \mathbf{ft}}{\mathbf{ft}}$ Flexural Resistance of the Wall about the Longitudinal Axis at Joints/Ends when considering only the parapet vertical reinforcment specified in Article A13.3.1 (k-ft/ft)	
$A_{val.end} = 0.31 \text{ in}^2$	Area of one deck anchorage vertical reinforcement leg in the tension zone at joints/ends (in^2)	
$s_{va.end} = 12 \cdot in$	Spacing of deck anchorage vertical reinforcement at joints/ends (in.)	
$\mathbf{A}_{va.end} := \left(\frac{\mathbf{b}_{c}}{\mathbf{s}_{va.end}}\right) \cdot \mathbf{A}_{val.end} = 0.31 \cdot \mathrm{in}^{2}$	Total Area of deck anchorage vertical reinforment per unit length of the wall at joints/ends (in ²)	
$\mathbf{a}_{ca.end} = \frac{\mathbf{A}_{va.end} \cdot \mathbf{f}_{y}}{0.85 \cdot \mathbf{f}_{c} \cdot \mathbf{b}_{c}} = 0.456 \cdot in$	Depth of Whitney Stress Block (in.)	

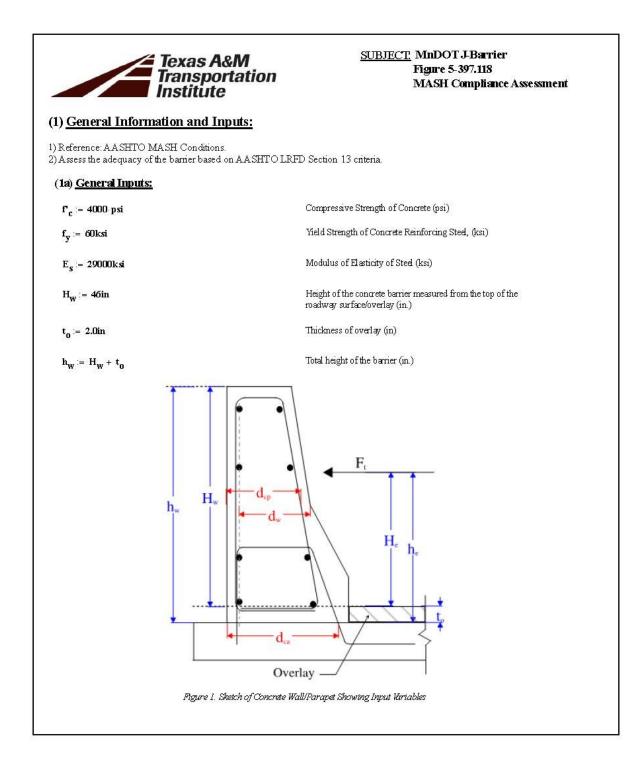





B-65


Texas A&M Transportation Institute	<u>SUBJECT</u> : MnDOT J-Barrier Figure 5-397.116 MASH TL-3 Compliance Assessment	
(3) <u>LRFD Strength Analysis of the Barrier per AASHTO Section 13 Specifications - Summary of Results:</u>		
h _w = 34 in	Total Height of the Concrete Barrier measured from the top of the roadway surface (in.)	
R _{wmid} = 91.526 kip	Ultimate Resistance of the wall at midspan (kip)	
R _{wend} = 50.442 kip	Ultimate Resistance of the wall at the end of the wall or at a joint (kip)	
$h_e = 21 \cdot in$	Total Height of the Transverse Impact Force, F _t (in.)	
$R_{R.mid} = R_{wmid} \left(\frac{h_w}{H_e + t_o} \right) = 148.185 \cdot kip$	Structural Capacity of the Barrier at midspan located at $\rm H_{e}$ (kip)	
$R_{R.end} := R_{wend} \left(\frac{h_w}{H_e + t_o} \right) = 81.668 \text{ kip}$	Structural Capacity of the Barrier at the end of the wall or at a joint located at $H_{\rm e}~(\!kip)$	
$F_t = 71 \cdot kip$	Transverse Impact Force located at $\rm H_{e}~(\rm kip)$	
Structural_Capacity_of_Barrier_at_Midspan_Check := $ "OK" \text{ if } R_{R,mid} \ge F_t$ "NOT OKAY" otherwise		
Structural_Capacity_of_Barrier_at_Midspan_Check = "OK"		
Structural_Capacity_of_Barrier_at_Ends_Check :=	"OK" if R _{R.end} ≥ F _t "NOT OKAY" otherwise	
Structural_Capacity_of_Barrier_at_Ends_Check = "OK"		





SUBJECT: MnDOT J-Barrier Figure 5-397.116 MASH TL-3 Compliance Assessment APPENDIX B4: J BARRIER ON FIGURE 5-397.118

November 26, 1985 5-397.118

(1b) <u>Concrete Parapet Inputs:</u>	SM <u>SUBJECT</u> rtation	<u>9</u> MnDOT J-Barrier Fignre 5-397.118 MASH Compliance Assessment
Parapet Vertical Reinforcement Inputs:		
A _{vpl.mid} = 0.31in ²	Area of one parapet vertical reinforcement leg in th	e tension zone at midspan (in²)
s _{vp.mid} = 12in	Spacing of parapet vertical reinforcement at midsp	an (in.)
d _{cp.mid} = 10.18in	Extreme distance of parapet vertical reinforcement	in tension at midspan (in.)
A _{vpl.end} = 0.31in ²	Area of one parapet vertical reinforcement leg in th	e tension zone at joints/ends (in ²)
s _{vp.end} := 9.6in	Spacing of parapet vertical reinforcement at joints/ 48 inches)	ends (in.) (5 bars over
d _{cp.end} := 10.18in	Extreme distance of tension parapet vertical reinfo	rcement at joints/ends (in.)
Longitudinal Reinforcement Inputs:		
A _w = 0.8in ²	Area of longitudinal reinforcement bars in tension	(in ²)
d _w := 9.625in	Extreme distance of tension longitudinal reinforcer	nent of wall (in.)

Texas A Transpo Institute	SUBJECT: MnDOT J-Barrier Figure 5-397.118 Figure 5-397.118 MASH TL-3 Compliance Assessment					
(1b-conti.) <u>Concrete Parapet Inputs:</u>						
DeckAnchorage Vertical Reinforcement Inputs:						
L _{proj_R502E} := 10in	Projected length of R502E reinforcement over the slab (in.)					
L _{wid_R502E} := 9in	Outer width of R502E reinforcement (in.)					
Cover := 2in	Cover clear distance (in.)					
$Ratio_{R502E} := \frac{5}{12}$	Inclined angle of R502E reinforcement					
^d b_R502E := 0.625 in	Nominal diameter of R502E rainforcement (#5 bar)					
d _{ca} := L _{wid_R502E} + L _{proj_R502E}	$E^{\text{Ratio}}_{\text{R502E}} + Cover - \frac{1}{2} d_{b}_{\text{R502E}} = 14.854 \text{ in}$					
	Extreme distance of tension deck anchorage vertical reinforcement (in,)					
DeckAnchorage Vertical Reinforcem	ent Inputs:					
$A_{val.mid} = 0.31in^2$	Area of one deck anchorage vertical reinforcement leg in the tension zone at midspan (in^2)					
s _{va.mid} = 12in	Spacing of deck anchorage vertical reinforcement at midspan (in.)					
$d_{ca.mid} = d_{ca} = 14.854$ in	Extreme distance of tension deck anchorage vertical reinforcement of the wall at midspan(in.)					
$A_{val.end} = 0.3 lin^2$	Area of one deck anchorage vertical reinforcement leg in the tension zone at joints/ends (in^2)					
s _{va.end} := 9.6in	Spacing of deck anchorage vertical reinforcement at joints/ends (in.) (5 bars over 4 feet average)					
$d_{ca.end} = d_{ca} = 14.854$ in	Extreme distance of tension deck anchorage vertical reinforcement at joints/ends (in.)					

<u>SUBJECT</u>: MnDOT J-Barrier Figure 5-397.118 MASH TL-3 Compliance Assessment

(1c) Design Force Inputs:

Design Forces for Traffic Railings

Test Level	Rail Height (in.)	Ft (kip)	FL (kip)	Fv (kip)	Lt/L1 (ft)	Lv (ft)	He (in)	Hmin (in)
TL-1	18 or above	13.5	4.5	4.5	4.0	18.0	18.0	18.0
TL-2	18 or above	27.0	9.0	4.5	4.0	18.0	20.0	18.0
TL-3	29 or above	71.0	18.0	4.5	4.0	18.0	19.0	29.0
TL-4 (a)	36	68.0	22.0	38.0	4.0	18.0	25.0	36.0
TL-4 (b)	between 36 and 42	80.0	27.0	22.0	5.0	18.0	30.0	36.0
TL-5 (a)	42	160.0	41.0	80.0	10.0	40.0	35.0	42.0
TL-5 (b)	greater than 42	262.0	75.0	160.0	10.0	40.0	43.0	42.0
TL 6		175.0	58.0	80.0	8.0	40.0	56.0	90.0

<u>References:</u>

- TL-1 and TL-2 Design Forces are from AASHTO LRFD Section 13 Table A13.2-1
- TL-3 Design Forces are from research conducted under NCHRP Project 20-07 Task 395
- TL-4 (a), TL-4 (b), TL-5 (a), and TL-5 (b) Design Forces are from research conducted under NCHRP Project 22-20(2)

TL := 3 Test Level

- F_t := 71kip Transverse Impact Force
- $L_t := 4ft$ Longitudinal Length of Distribution of Impact Force
- H_e := 19in Height of Equivalent Transverse Load
- H_{min} := 29in Minimum height of a MASH TL-3 barrier (in.)
- H_w = 46 in Height of the concrete barrier measured from the top of the roadway surface/overlay (in.)

	Texas A&M Fransportation nstitute		MnDOT J-Barrier Figur e 5-397.118 MASH TL-3 Compliance Assessment	
(2) <u>Stability Criteria</u>	I			
H _{min} = 29∙in	Minimum height of a MASH	HTL-3 barrier (in.)		
H _w = 46 in	Height of the concrete barrier	measured from the top of	f the roadway surface/overlay (in.)	
Minimum_Height_of_	Barrier_Check := "OK" if F "NOT OKAN	H _w ≥H _{min} Y'' otherwise		
	Minimum_Height_of_Barrie	r_Check = "OK"		

<u>SUBJECT</u>, MnDOT J-Barrier Figure 5-397.118 MASH TL-3 Compliance Assessment

(3) LRFD Strength Analysis of the Barrier per AASHTO Section 13 Specifications:

(3a) Bending Capacity of the Wall about the Longitudinal Axis at Midspan: Memid (k-ft/ft)

b_c := 12in

 $A_{vp1.mid} = 0.31 \text{ in}^2$

s_{vp.mid} = 12 in

 $A_{vp.mid} = \left(\frac{b_c}{s_{vp.mid}}\right) A_{vp1.mid} = 0.31 \cdot in^2$

d_{cp.mid} = 10.18 · in

M_{cp.mid} :=

$$a_{cp.mid} = \frac{A_{vp.mid} \cdot f_y}{0.85 \cdot f_c \cdot b_c} = 0.456$$
 in

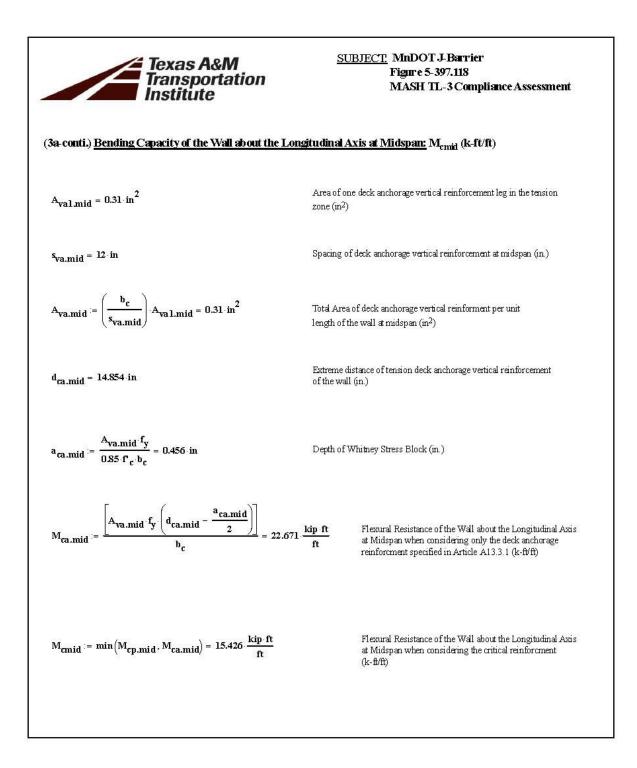
Depth of Whitney Stress Block (in.)

Unit Width of Wall (in.)

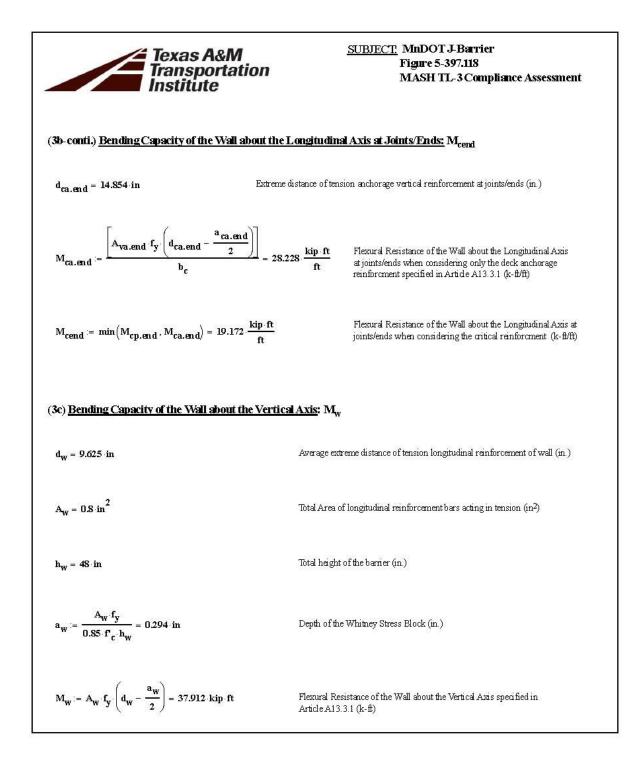
at midspan (in²)

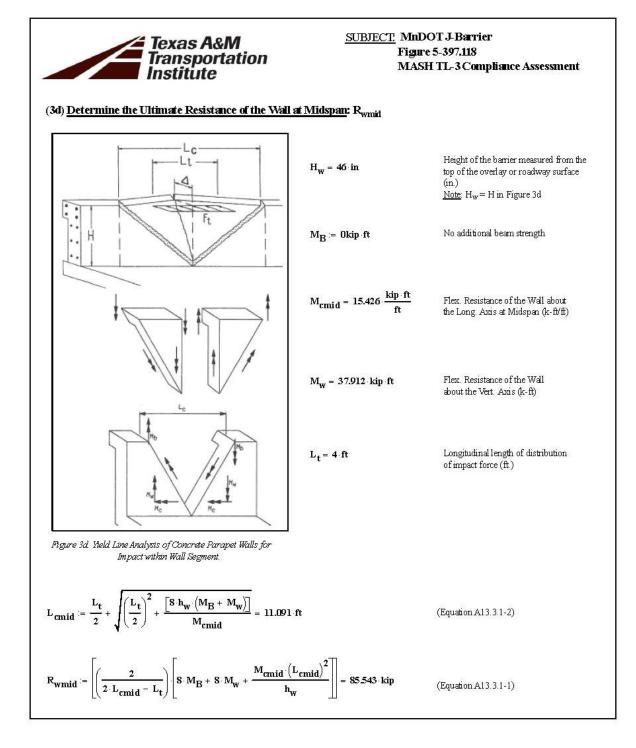
tension (in.)

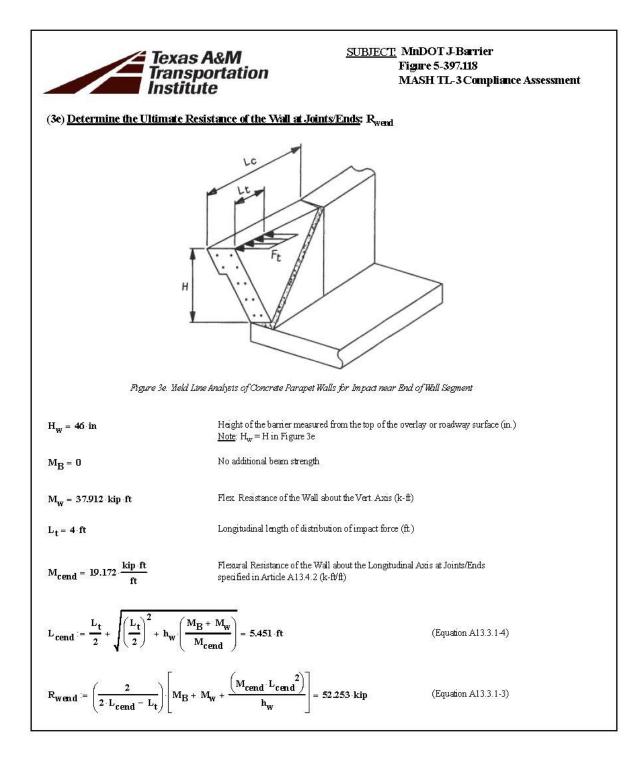
Note: bc is taken as 1ft per AASHTO Section 13 procedure

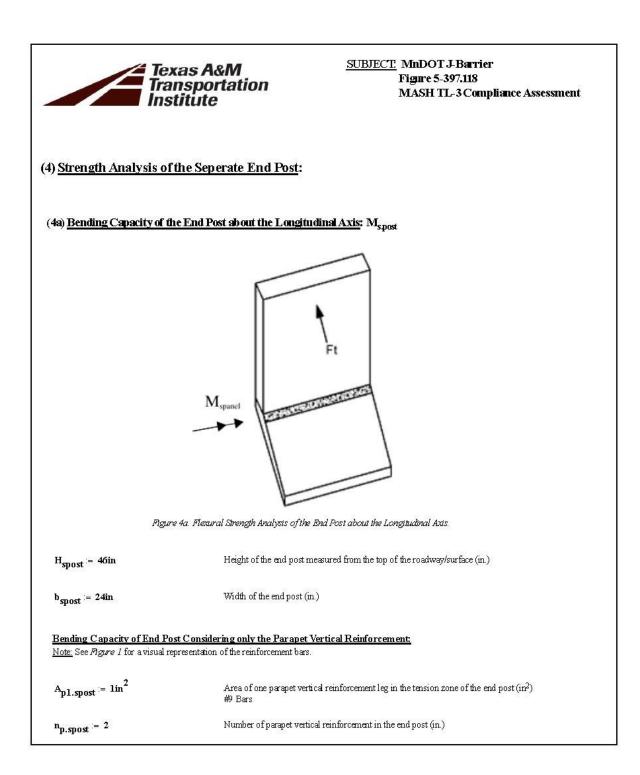

Spacing of parapet vertical reinforcement at midspan (in.)

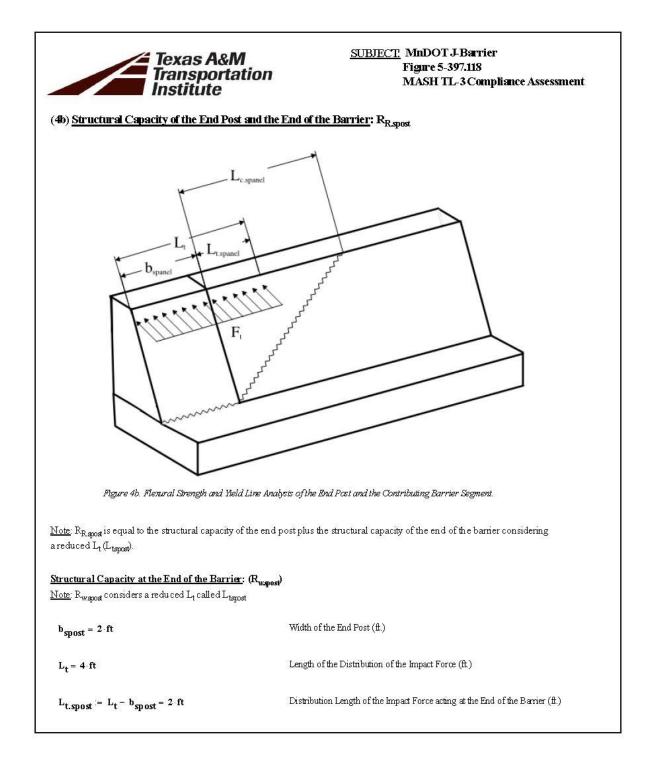
Area of one parapet vertical reinforcement leg in the tension zone (in2)

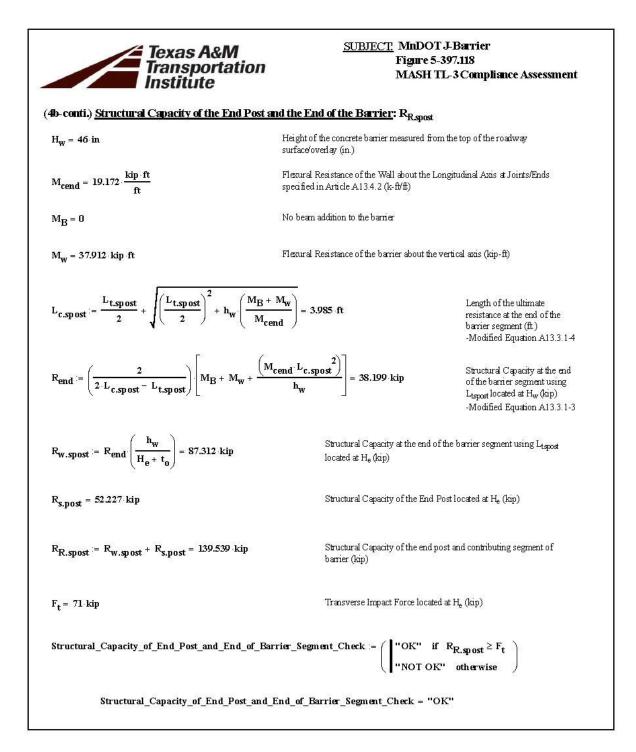

Total Area of parapet vertical reinforment per unit length of the wall

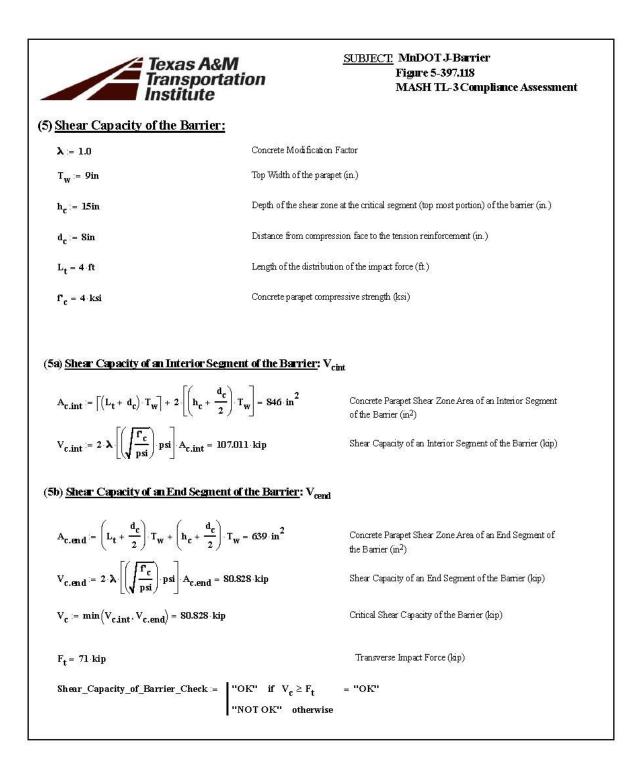

Average extreme distance of parapet vertical reinforcement in

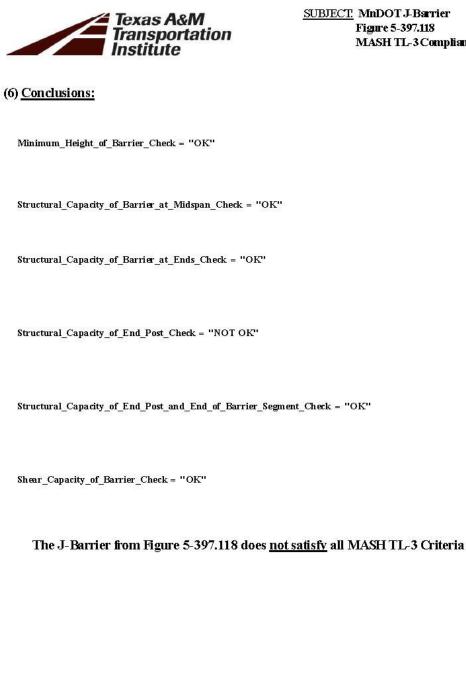

 $\frac{\left[A_{vp.mid} \cdot f_{y} \cdot \left(d_{cp.mid} - \frac{a_{cp.mid}}{2}\right)\right]}{b_{c}} = 15.426 \cdot \frac{kip \cdot ft}{ft}$ Flexural Resistance of the Wall about the Longitudinal Axis at Midspan when considering only the parapet vertical reinforcment specified in Article A13.3.1 (k-ft/ft)


Texas A&M Transportatio Institute	SUBJECT: MnDOT J-Barrier Figure 5-397.118 MASH TL-3 Compliance Assessment
(3b) <u>Bending Capacity of the Wall about the</u>	<u>Longitudinal Axis at Joints/Ends</u> M _{cend}
$b_c = 12 \cdot in$	Unit Width of Wall (in.)
$A_{vpl.end} = 0.31 \cdot in^2$	Area of one parapet vertical reinforcement leg in the tension zone at joints/ends (in $\!$ joints/ends (in $\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
s _{vp.end} = 9.6 in	Spacing of parapet vertical reinforcement at joints/ends (in.)
$A_{vp.end} := \left(\frac{b_c}{s_{vp.end}}\right) \cdot A_{vp1.end} = 0.388 \cdot in^2$	Total Area of parapet vertical reinforment per unit length of the wall at joints/ends (in^2)
$\mathbf{a_{cp.end}} \coloneqq \frac{\mathbf{A_{vp.end}} \cdot \mathbf{f_y}}{0.85 \cdot \mathbf{f_c} \cdot \mathbf{b_c}} = 0.57 \cdot \mathbf{in}$	Depth of Whitney Stress Block (in.)
d _{cp.end} = 10.18 · in	Average extreme distance of tension parapet vertical reinforcement at joints/ends (in)
$M_{cp.end} := \frac{\left[A_{vp.end} \cdot f_{y} \cdot \left(d_{cp.end} - \frac{a_{cp.end}}{2}\right)\right]}{b_{c}}$	= 19.172 $\cdot \frac{\text{kip} \cdot \text{ft}}{\text{ft}}$ Flexural Resistance of the Wall about the Longitudinal Axis at Joints/Ends when considering only the parapet vertical reinforcment specified in Article A13.3.1 (k-fb/ft)
$A_{val.end} = 0.31 \cdot in^2$	Area of one deck anchorage vertical reinforcement leg in the tension zone at joints/ends (in $\!$)
s _{va.end} = 9.6 in	Spacing of deck anchorage vertical reinforcement at joints/ends (in.)
$A_{va.end} := \left(\frac{b_c}{s_{va.end}}\right) \cdot A_{val.end} = 0.388 \cdot in^2$	Total Area of deck anchorage vertical reinforment per unit length of the wall at joints/ends (in ²)
$a_{ca.end} = \frac{A_{va.end} f_y}{0.85 f_c b_c} = 0.57 in$	Depth of Whitney Stress Block (in.)

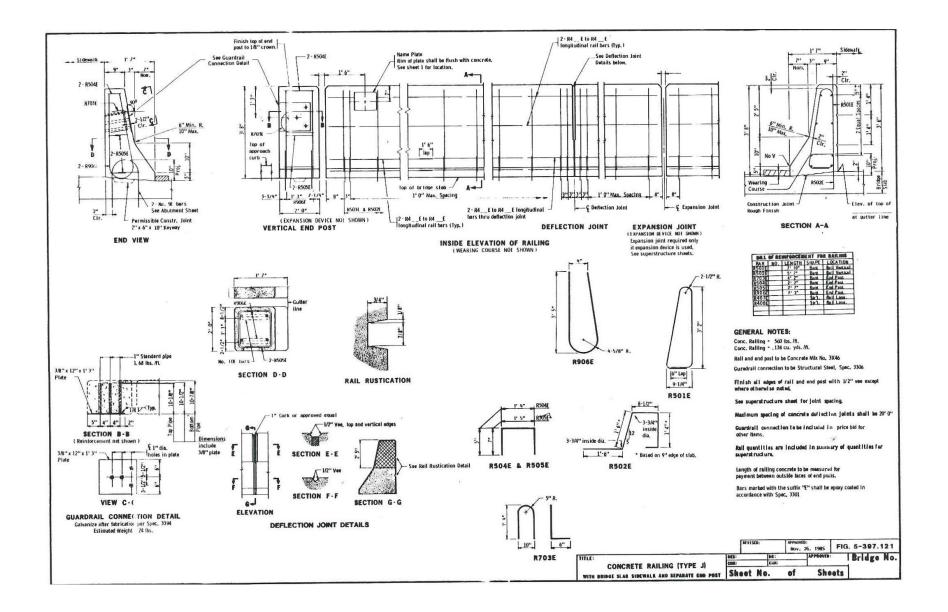


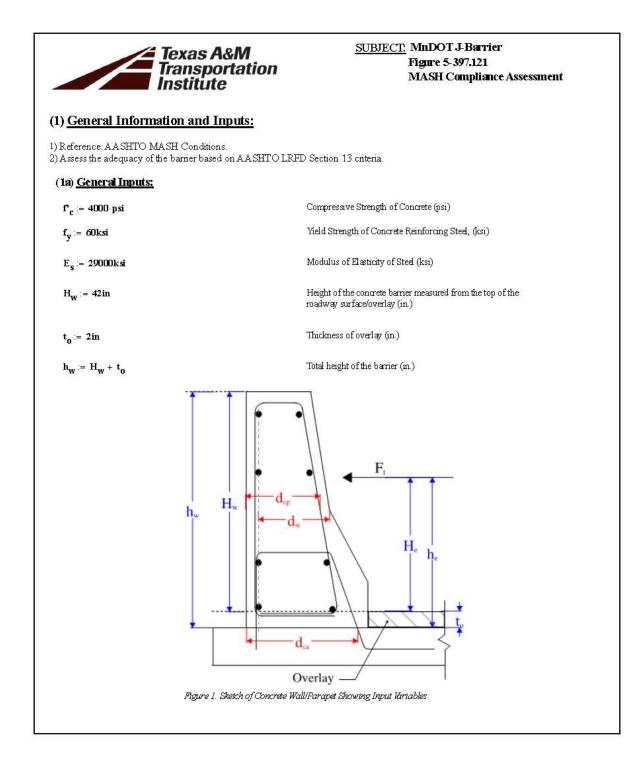



Texas A&M Transportation Institute	<u>SUBJECT</u> MnDOT J-Barrier Figure 5-397.118 MASH TL-3 Compliance Assessment
3) <u>LRFD Strength Analysis of the Barrier per AA</u>	SHTO Section 13 Specifications - Summary of Results:
$H_w = 46$ in	Height of the Concrete Barrier measured from the top of the roadway surface (in.)
R _{wmid} = 85 <i>5</i> 43 · kip	Ultimate Resistance of the wall at midspan (kip)
R _{wend} = 52.253 kip	Ultimate Resistance of the wall at the end of the wall or at a joint (kip)
$H_e = 19 \cdot in$	Height of the Transverse Impact Force, $F_t(in.)$
$R_{R.mid} \coloneqq R_{wmid} \left(\frac{h_w}{H_e + t_0} \right) = 195.527 \text{ kip}$	Structural Capacity of the Barrier at midspan located at $\rm H_{e}$ (kip)
$R_{R.end} = R_{wend} \left(\frac{H_w}{H_e + t_o} \right) = 114.459 \text{ kip}$	Structural Capacity of the Barrier at the end of the wall or at a joint located at $H_{\rm e}~(\rm kip)$
F _t = 71 kip	Transverse Impact Force located at H _e (kip)
Structural_Capacity_of_Barrier_at_Midspan_Check :	= "OK" if R _{R.mid} ≥ F _t "NOT OKAY" otherwise
Structural_Capacity_of_Barri	ier_at_Midspan_Check = ''OK''
Structural_Capacity_of_Barrier_at_Ends_Check :=	"OK" if R _{R.end} ≥F _t "NOT OKAY" otherwise
Structural_Capacity_of_Barri	ier_at_Ends_Check = "OK"



Texas A&M Transportation Institute	<u>SUBJECT</u> MnDOT J-Barrier Figure 5-397.118 MASH TL-3 Compliance Assessment
(4a-conti.) Bending Capacity of the End Post about	ut the Longitudinal Axis: M _{spost}
$A_{p.spost} = n_{p.spost} A_{p1.spost} = 2 m^2$	Total Area of parapet vertical reinforment in the tension zone of the end post (in^2)
$a_{p.spost} := \frac{A_{p.spost} f_y}{0.85 \cdot f_c \cdot b_{spost}} = 1.471 \cdot in$	Depth of the Whitney Stress Block (in.)
dp.spost = 9.875in Average extrem	ne distance of tension parapet vertical reinforcement in the end $post(in)$
$M_{p.spost} := A_{p.spost} \cdot f_{y} \cdot \left(d_{p.spost} - \frac{a_{p.spost}}{2} \right) = 91$	1.397 kip ft Flexural Capacity of the End Post about the Longitudinal Axis when considering only the parapet vertical reinforcment (kip-ft)
Bending Cap acity of End Post Considering only the D Note: See <i>Figure 1</i> for a visual representation of the reinforcen	
Aal.spost := lin ² Area of one and #9 Bars	chorage vertical reinforcement leg in the tension zone in the end post (in^2)
na.spost := 2 Number of and	horage vertical reinforcement in the end post (in.)
$A_{a.spost} = n_{a.spost} A_{a1.spost} = 2 in^2$	Total Area of deck anchorage vertical reinforment in the tension zone of the end post (in^2)
$a_{a.spost} = \frac{A_{a.spost} \cdot f_y}{0.85 f_c \cdot b_{spost}} = 1.471 \text{ in}$	Depth of the Whitney Stress Block (in.)
d _{a.spost} := 14in Extreme distance	ice of tension deck anchorage vertical reinforcement in the end post (in.)
$M_{a.spost} := A_{a.spost} f_y \left(d_{a.spost} - \frac{a_{a.spost}}{2} \right) = 132$	2.647 kip ft Flexural Capacity of the End Post about the Longitudinal Axis when considering only the deck anchorage vertical reinforcment (kip-ft)
$M_{s,post} := \min(M_{p,spost}, M_{a,spost}) = 91.397 \cdot kip \cdot ft$	t Flexural Resistance of the End Post about the Longitudinal Axis when considering the critical reinforcment (k-fb/ft)





SUBJECT: MnDOT J-Barrier Figure 5-397.118 MASH TL-3 Compliance Assessment APPENDIX B5: J BARRIER ON FIGURE 5-397.121

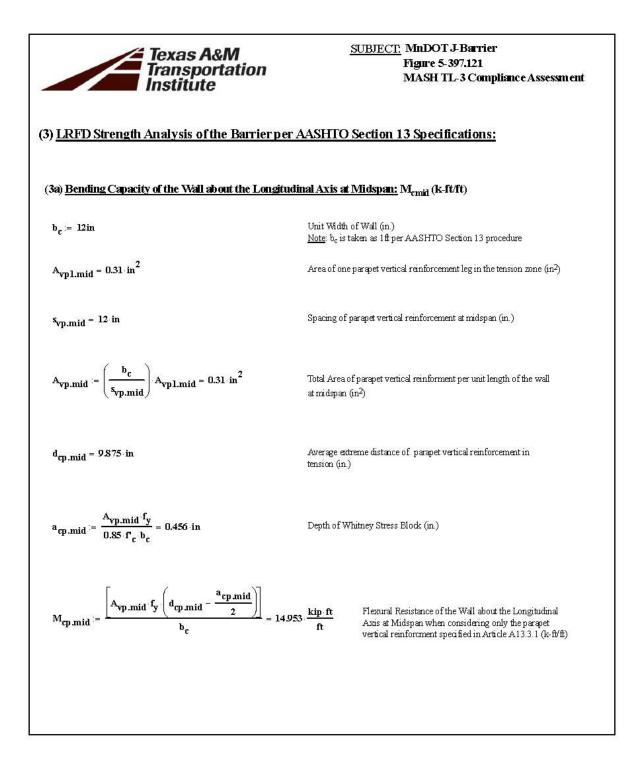
(1b) <u>Concrete Parapet Inputs:</u>	SUBJECT: MnDOT J-Barrier Figure 5-397.121 Figure 5-397.121 MASH Compliance Assessment MASH Compliance Assessment
Parapet Vertical Reinforcement Inputs:	<u>.</u>
$A_{vp1.mid} = 0.31in^2$	Area of one parapet vertical reinforcement leg in the tension zone at midspan (in^2)
s _{vp.mid} = 12in	Spacing of parapet vertical reinforcement at midspan (in.)
d _{cp.mid} := 9.875in	Extreme distance of parapet vertical reinforcement in tension at midspan (in.)
A _{vpl.end} := 0.31in ²	Area of one parapet vertical reinforcement leg in the tension zone at joints/ends (in^2)
s _{vp.end} := 12in	Spacing of parapet vertical reinforcement at joints/ends (in.)
d _{cp.end} := 9.875in	Extreme distance of tension parapet vertical reinforcement at joints/ends (in.)
<u>Longitudinal Reinforcement Inputs:</u>	
$A_w = 0.8in^2$	Area of longitudinal reinforcement bars in tension (in^2)
d _w := 9.125in	Extreme distance of tension longitudinal reinforcement of wall (in.)

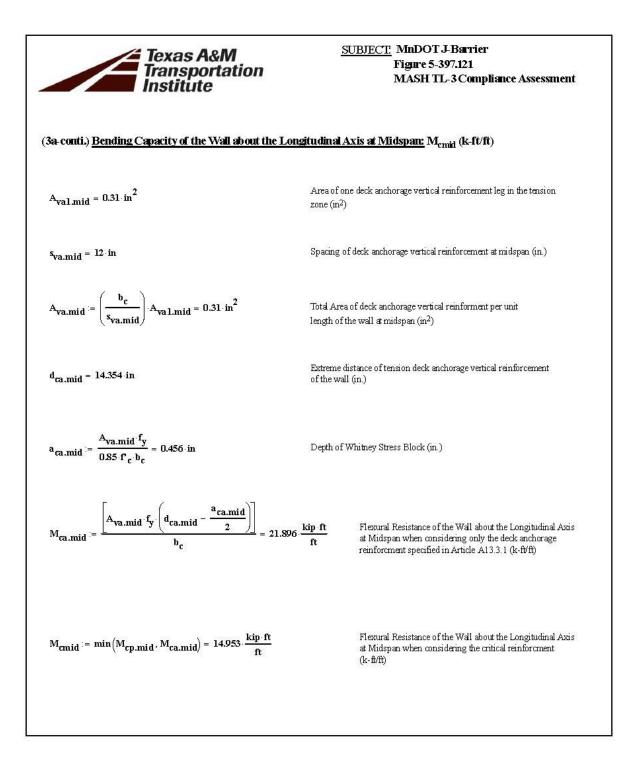
Texas Trans Institu	A&M <u>SUBJECT</u> MnDOT J-Barrier Figure 5-397.121 MASH Compliance Assessmente	ıent
conti.) <u>Concrete Parapet Inp</u> u	<u>ts:</u>	
eckAnchorage Vertical Reinforc	ment Inputs:	
^L proj_R502E ^{:=} 10in	Projected length of R502E reinforcement over the slab (in.)	
^L wid_R502 E := 8.5in	Outer width of R502E reinforcement (in.)	
Cover := 2in	Cover clear distance (in.)	
$\text{Ratio}_{\text{R502E}} := \frac{5}{12}$	Inclined angle of R502E reinforcement	
^d b_R502E = 0.625 in	Nominal diameter of R502Erainforcement (#5 bar)	
d _{ca} := L _{wid_R502E} + L _{proj_R5}	$12E^{-Ratio}_{R502E} + Cover - \frac{1}{2}d_{b_{R502E}} = 14.354$ in	
	Extreme distance of tension deck anchorage vertical reinforcement (in,)	
$A_{val.mid} = 0.31 m^2$	Area of one deck anchorage vertical reinforcement leg in the tension zone at midspan (.n ²)
s _{va.mid} = 12in	Spacing of deck anchorage vertical reinforcement at midspan (in.)	
d _{ca.mid} = d _{ca} = 14.354 in	Extreme distance of tension deck anchorage vertical reinforcement of the wall at midsp	an(in.)
$A_{val.end} = 0.31 in^2$	Area of one deck anchorage vertical reinforcement leg in the tension zone at joints/ends	; (in²)
s _{va.end} := 12in	Spacing of deck anchorage vertical reinforcement at joints/ends (in.)	
$\mathbf{d_{ca.end}} = \mathbf{d_{ca}} = 14.354$ in	Extreme distance of tension deck anchorage vertical reinforcement at joints/ends (in.)	

SUBJECT: MnDOT J-Barrier Figure 5-397.121 MASH TL-3 Compliance Assessment

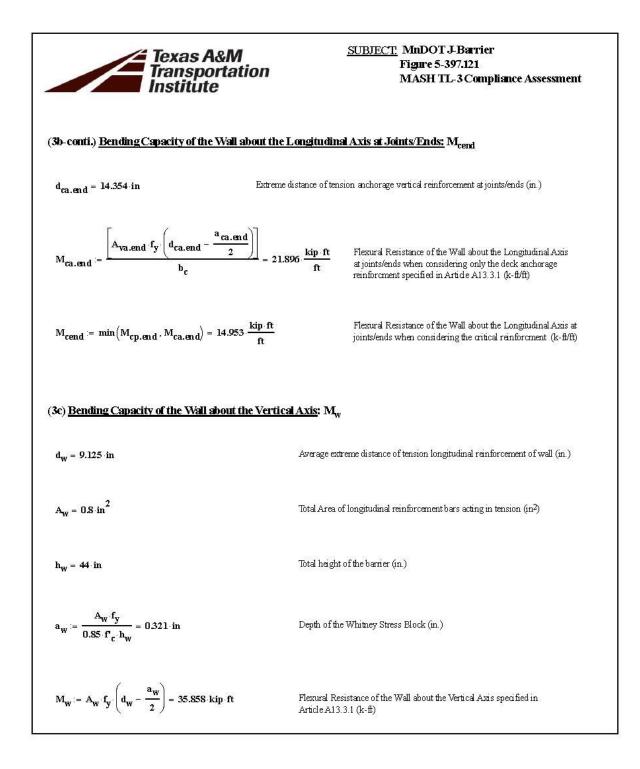
(1c) Design Force Inputs:

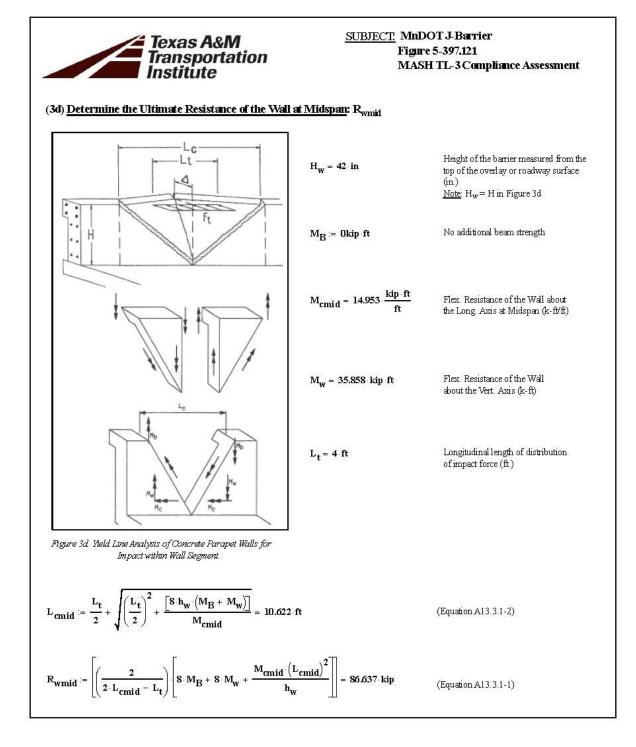
Design Forces for Traffic Railings

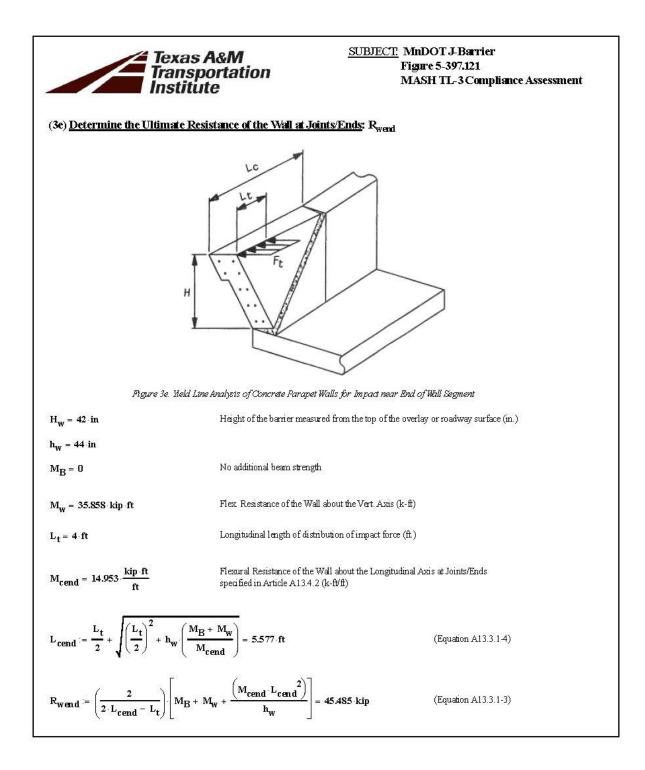

Test Level	Rail Height (in.)	Ft (kip)	FL (kip)	F _v (kip)	Lt/LL (ft)	L _v (ft)	H _e (in)	H _{min} (in)
TL-1	18 or above	13.5	4.5	4.5	4.0	18.0	18.0	18.0
TL-2	18 or above	27.0	9.0	4.5	4.0	18.0	20.0	18.0
TL-3	29 or above	71.0	18.0	4.5	4.0	18.0	19.0	29.0
TL-4 (a)	36	68.0	22.0	38.0	4.0	18.0	25.0	36.0
TL-4 (b)	between 36 and 42	80.0	27.0	22.0	5.0	18.0	30.0	36.0
TL-5 (a)	42	160.0	41.0	80.0	10.0	40.0	35.0	42.0
TL-5 (b)	greater than 42	262.0	75.0	160.0	10.0	40.0	43.0	42.0
TL 6		175.0	58.0	80.0	8.0	40.0	56.0	90.0

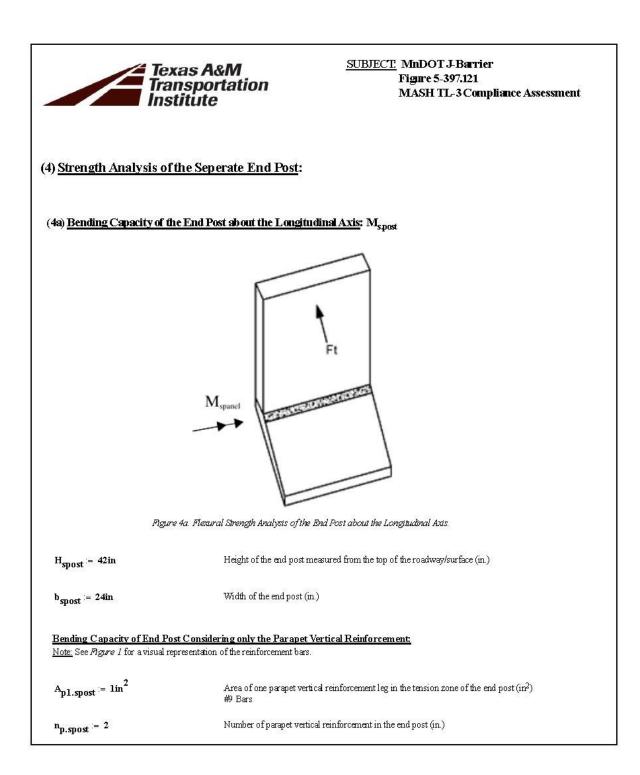

References:

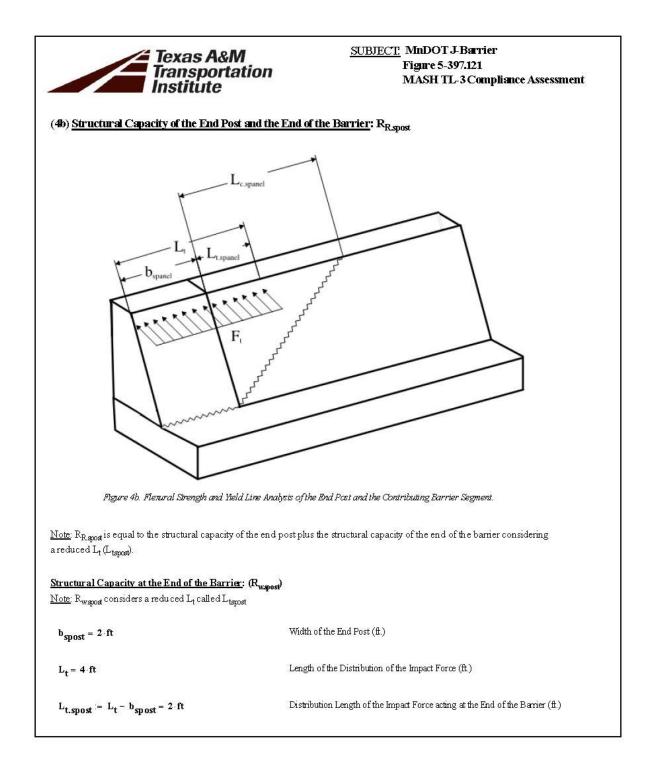
- TL-1 and TL-2 Design Forces are from AASHTO LRFD Section 13 Table A13.2-1
 TL-3 Design Forces are from research conducted under NCHRP Project 20-07 Task 395
 TL-4 (a), TL-4 (b), TL-5 (a), and TL-5 (b) Design Forces are from research conducted under NCHRP Project 22-20(2)

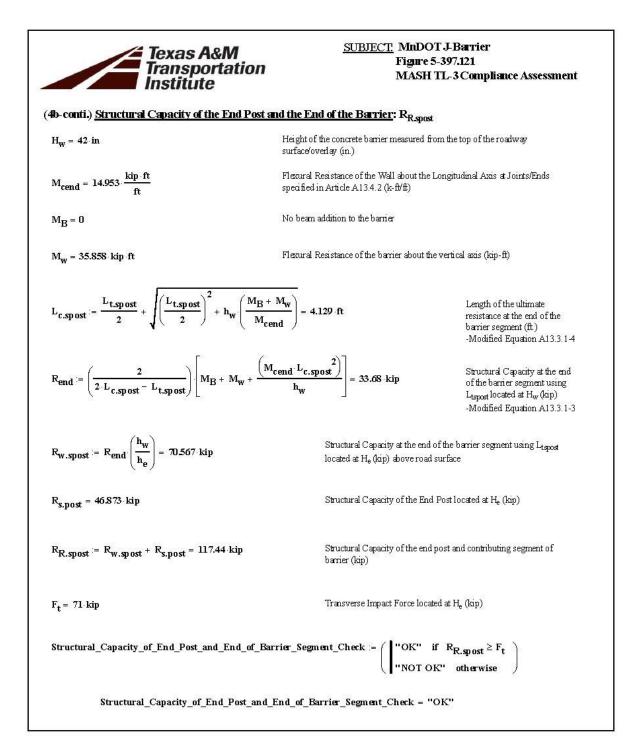

TL := 3	Test Level
F _t = 71kip	Transverse Impact Force
$L_t = 4ft$	Longitudinal Length of Distribution of Impact Force
H _e := 19in	Height of Equivalent Transverse Load
$\mathbf{h}_{\mathbf{e}} = \mathbf{H}_{\mathbf{e}} + \mathbf{t}_{0}$	Total Height of Equivalent IMpact Force (in.)
H _{min} := 29in	Minimum height of a MASH TL-3 barrier (in.)
H _w = 42 · in	Height of the concrete barrier measured from the top of the roadway surface/overlay (in.)

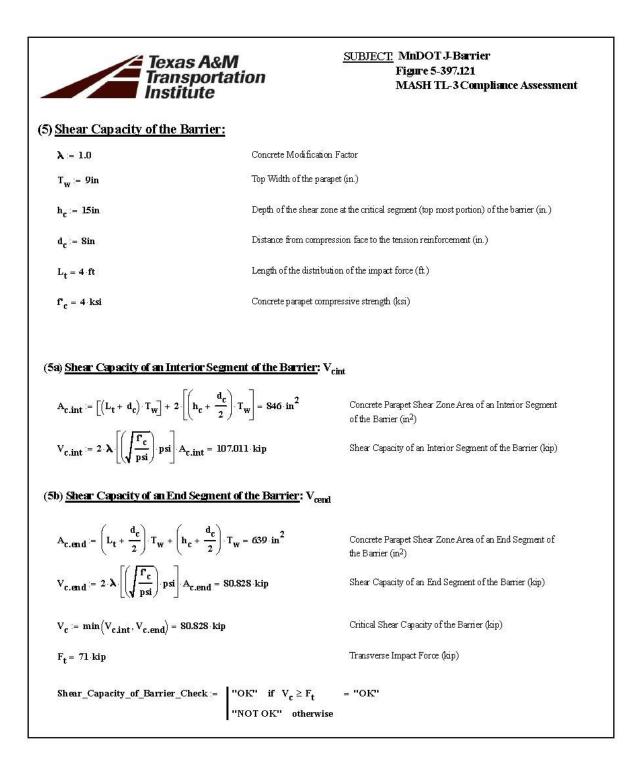

Te. Tra Ins	xas A&M Insportation Stitute	<u>SUBJECT</u> MnDOT J-Barrier Figure 5-397.121 MASH TL-3 Compliance Assessment
(2) <u>Stability Criteria:</u>		
H _{min} = 29 in	Minimum height of a MASHTL-3 bar	rier (m.)
H _w = 42 in	Height of the concrete barrier measured	f from the top of the roadway surface/overlay (in.)
Minimum_Height_of_Bar	rier_Check := "OK" if $H_W \ge H_W$ "NOT OKAY" oth	uin arwise
	Minimum_Height_of_Barrier_Check	: = "OK"

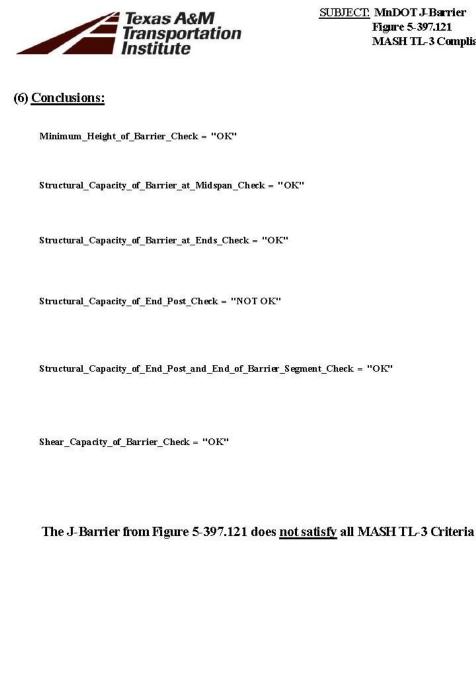



Texas A&M Transportation Institute	SUBJECT: MnDOT J-Bartier Figure 5-397.121 MASH TL-3 Compliance Assessment
(3b) <u>Bending Capacity of the Wall about the Longitudinal Axis at Joints/Ends.</u> M _{cend}	
$\mathbf{b}_{\mathbf{c}} = 12 \cdot \mathbf{in}$	Unit Width of Wall (in.)
$A_{vpl.end} = 0.31 \text{ in}^2$	Area of one parapet vertical reinforcement leg in the tension zone at joints/ends (in 2)
s _{vp.end} = 12 · in	Spacing of parapet vertical reinforcement at joints/ends (in.)
$A_{vp.end} := \left(\frac{b_c}{s_{vp.end}}\right) \cdot A_{vp1.end} = 0.31 \cdot in^2$	Total Area of parapet vertical reinforment per unit length of the wall at joints/ends (in ²)
$a_{cp.end} = \frac{A_{vp.end} \cdot f_y}{0.85 \cdot f_c \cdot b_c} = 0.456 \cdot in$	Depth of Whitney Stress Block (in.)
d _{cp.end} = 9.875 · in	Average extreme distance of tension parapet vertical reinforcement at joints/ends (in.)
$M_{cp.end} := \frac{\left[A_{vp.end} \cdot f_{y} \cdot \left(d_{cp.end} - \frac{a_{cp.end}}{2}\right)\right]}{b_{c}}$	= 14.953 · <u>kip ft</u> ft Flexural Resistance of the Wall about the Longitudinal Azis at Joints/Ends when considering only the parapet vertical reinforment specified in Article A13.3.1 (k-ft/ft)
$A_{val.end} = 0.31 \cdot in^2$	Area of one deck anchorage vertical reinforcement leg in the tension zone at joints/ends (in ²)
s _{va.end} = 12 in	Spacing of deck anchorage vertical reinforcement at joints/ends (in.)
$\mathbf{A_{va.end}} \coloneqq \left(\frac{\mathbf{b_c}}{\mathbf{s_{va.end}}}\right) \cdot \mathbf{A_{val.end}} = 0.31 \cdot \mathbf{in}^2$	Total Area of deck anchorage vertical reinforment per unit length of the wall at joints/ends (in ²)
$a_{ca.end} := \frac{A_{va.end} \cdot f_y}{0.85 \cdot f_c \cdot b_c} = 0.456 \cdot in$	Depth of Whitney Stress Block (in.)

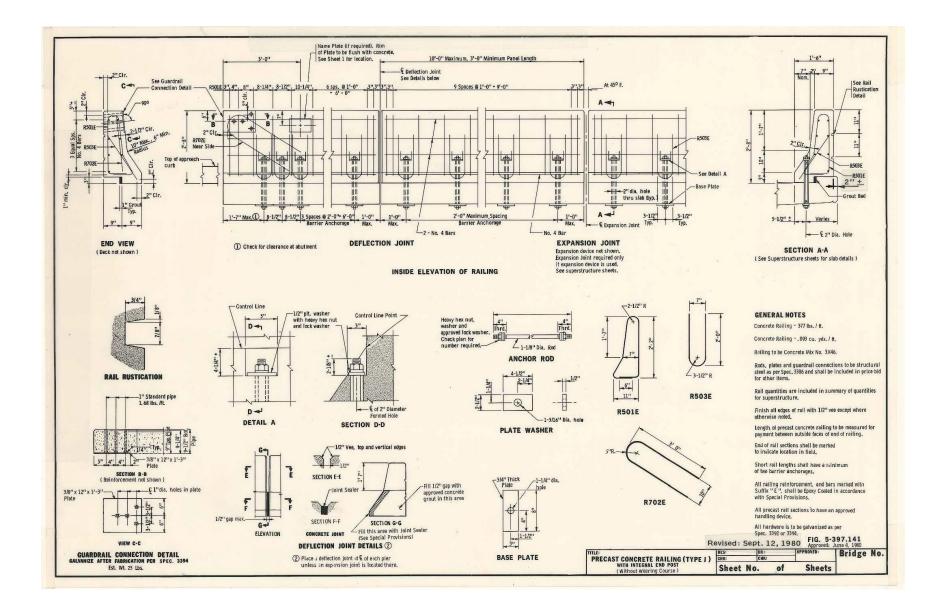





Texas A&M Transportation Institute	<u>SUBJECT</u> MnDOT J-Barrier Figure 5-397.121 MASH TL-3 Compliance Assessment
3) <u>LRFD Strength Analysis of the Barrier per AA</u>	SHTO Section 13 Specifications - Summary of Results:
$H_{W} = 42 \cdot in$	Height of the Concrete Barrier measured from the top of the roadway surface (in.)
R _{wmid} = 86.637 kip	Ultimate Resistance of the wall at midspan (kip)
R _{wend} = 45.485 kip	Ultimate Resistance of the wall at the end of the wall or at a joint (kip)
$H_e = 19 in$	Height of the Transverse Impact Force, $F_t(in.)$
$R_{R.mid} := R_{wmid} \left(\frac{h_w}{h_e} \right) = 181.525 \text{ kip}$	Structural Capacity of the Barrier at midspan located at \mathbf{H}_{e} (kip)
$R_{\mathbf{R.end}} \coloneqq R_{\mathbf{wend}} \left(\frac{\mathbf{h}_{\mathbf{w}}}{\mathbf{h}_{\mathbf{e}}} \right) = 95.301 \text{ kip}$	Structural Capacity of the Barrier at the end of the wall or at a joint located at $H_{\rm e}~({\rm kip})$
F _t = 71 kip	Transverse Impact Force located at H _e (kip)
Structural_Capacity_of_Barrier_at_Midspan_Check :	= "OK" if $R_{R,mid} \ge F_t$ "NOT OKAY" otherwise
Structural_Capacity_of_Barri	iæ_at_Midspan_Check = "OK"
Structural_Capacity_of_Barrier_at_Ends_Check :=	"OK" if R _{R.end} ≥ F _t "NOT OKAY" otherwise
Structural_Capacity_of_Barri	ier_at_Ends_Check = "OK"



Texas A&M Transportation Institute	<u>SUBJECT</u> MnDOT J-Barrier Figure 5-397.121 MASH TL-3 Compliance Assessment
(4a-conti.) Bending Capacity of the End Post about t	<u>he Longitudinal Axis</u> : M _{s nost}
$A_{p.spost} = n_{p.spost} A_{p1.spost} = 2 \cdot in^2$	Total Area of parapet vertical reinforment in the tension zone of the end post (in ²)
$a_{p.spost} := \frac{A_{p.spost} f_y}{0.85 f_c b_{spost}} = 1.471 in$	Depth of the Whitney Stress Block (in.)
dp.spost := 8.938in Average extreme of	istance of tension parapet vertical reinforcement in the end $post(in)$
$\mathbf{M}_{\mathbf{p}.\mathbf{spost}} := \mathbf{A}_{\mathbf{p}.\mathbf{spost}} \cdot \mathbf{f}_{\mathbf{y}} \cdot \left(\mathbf{d}_{\mathbf{p}.\mathbf{spost}} - \frac{\mathbf{a}_{\mathbf{p}.\mathbf{spost}}}{2} \right) = 82.02$	7 kip ft Flexural Capacity of the End Post about the Longitudinal Axis when considering only the parapet vertical reinforcment (kip-ft)
Bending Capacity of End Post Considering only the Dec Note: See Figure 1 for a visual representation of the reinforcemen	
A _{al.spost} := 1.27in ² Area of one ancho #10 Bars	rage vertical reinforcement leg in the tension zone in the end post (in^2)
n _{a.spost} := 2 Number of anchor	age vertical reinforcement in the end post (in.)
$A_{a.spost} = n_{a.spost} A_{a1.spost} = 2.54 m^2$	Total Area of deck anchorage vertical reinforment in the tension zone of the end post (in^2)
$a_{a.spost} := \frac{A_{a.spost} \cdot f_y}{0.85 \cdot f_c \cdot b_{spost}} = 1.868 \cdot in$	Depth of the Whitney Stress Block (in.)
d _{a.spost} := 15in Extreme distance o	f tension deck anchorage vertical reinforcement in the end post (in.)
$M_{a.spost} := A_{a.spost} f_y \left(d_{a.spost} - \frac{a_{a.spost}}{2} \right) = 178.64$	4 kip ft Flexural Capacity of the End Post about the Longitudinal Axis when considering only the deck anchorage vertical reinforcment (kip-ft)
$\mathbf{M}_{s,post} \coloneqq \min \left(\mathbf{M}_{p,spost}, \mathbf{M}_{a,spost} \right) = 82.027 \cdot kip \cdot ft$	Flexural Resistance of the End Post about the Longitudinal Azis when considering the critical reinforcment (k-fb/ft)



MASH TL-3 Compliance Assessment

APPENDIX B6: J BARRIER ON FIGURE 5-397.141

	A&M ortation e	<u>SUBJECT</u> : MnDOT J-Barrier Figure 5-397.141 MASH TL-3 Compliance Assessment		
(1b) <u>Concrete Parapet Inputs:</u>				
Vertical Reinforcement Inputs:				
$A_{vpl.mid} = 0.31in^2$	Area of one vertical reir	forcement leg in the tension zone at midspan (in^2)		
s _{vp.mid} := 12in	Spacing of vertical rain	brcement at midspan (in.)		
d _{cp.mid} = 8.6875in	Extreme distance of ver	tical reinforcement in tension at midspan (in)		
$A_{vpl.end} = 0.31in^2$	Area of one vertical reir	aforcement leg in the tension zone at joints/ends (in^2)		
s _{vp.end} = 12in	Spacing of vertical rain	forcement at joints/ends (in.)		
d _{cp.end} := 8.6875in	Extreme distance of ter	sion vertical reinforcement at joints/ends (in.)		
Longitudinal Reinforcement Inputs:				
$A_{W} = 0.8in^2$	Area of longitudinal re	nforcement bars in tension (in ²)		
d _w := 8.125in	Extreme distance of ten	sion longitudinal reinforcement of wall (in.)		
DeckAnchorage Vertical Reinforcement Inputs:				
$A_{val.mid} = 1.0in^2$	Area of one deck ancho	rage vertical reinforcement leg in tension zone at midspan (in^2) (Bolts)		
s _{va.mid} = 24in	Spacing of deck anchor	age vertical reinforcement at midspan (in.) (Bolt spacing)		
d _{ca.mid} = 12.5in	Extreme distance of ten	sion deck anchorage vertical reinforcement (in.) (Bolts)		
A _{val.end} = 1.0in ²	Area of one deck ancho	rage vertical reinforcement leg in tension zone at end (in^2)		
^s va.end = 24in	Spacing of deck anchor	age vertical reinforcement at end (in.)		
d _{ca.end} = 12.5in	Extreme distance of ten	sion deck anchorage vertical reinforcement (in.)		

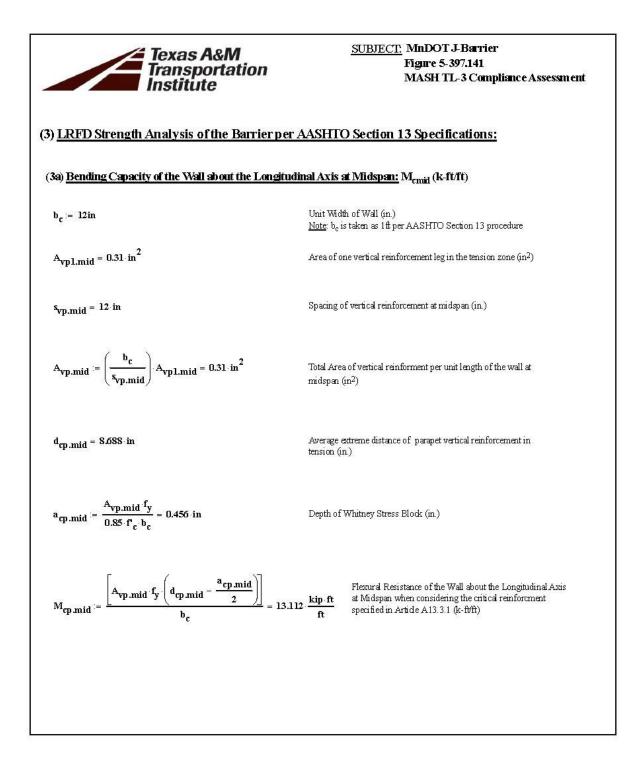
<u>SUBJECT.</u> MnDOT J-Barrier Figure 5-397.141 MASH TL-3 Compliance Assessment

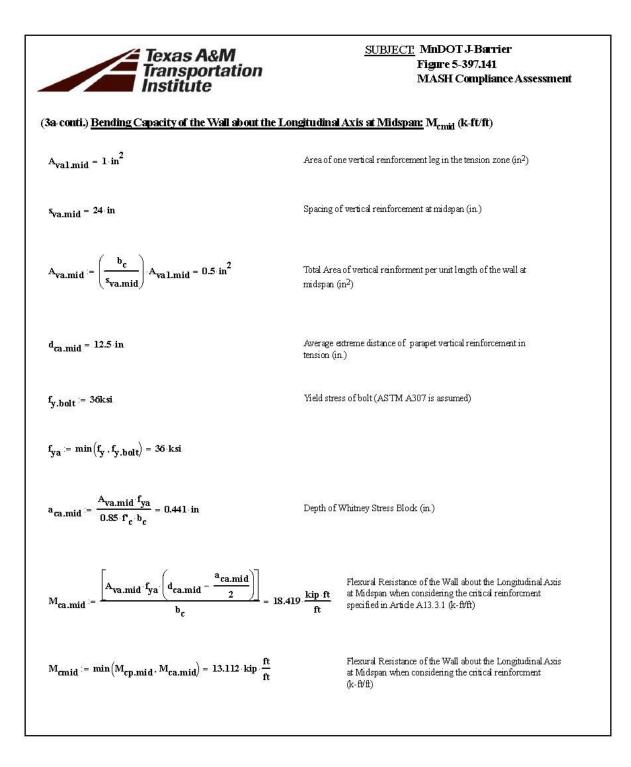
(1c) Design Force Inputs:

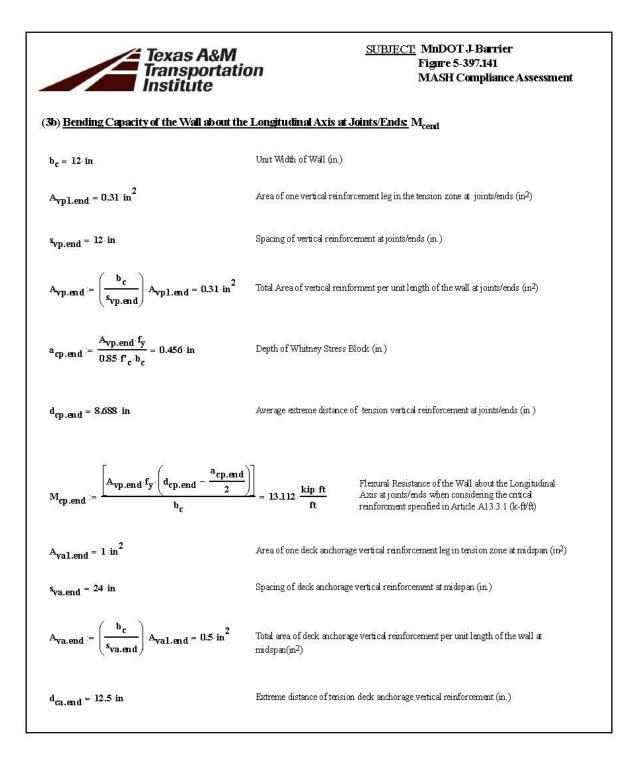
Design Forces for Traffic Railings

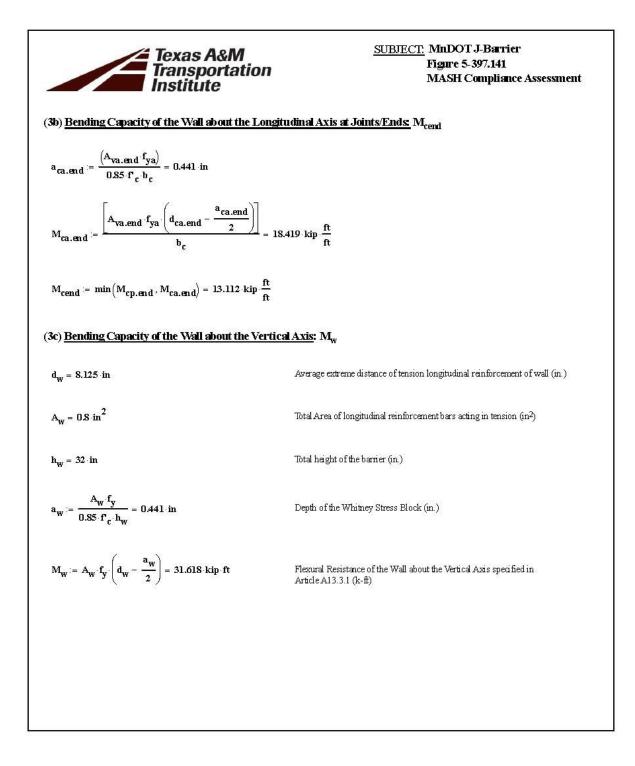
Test Level	Rail Height (in.)	Ft (kip)	FL (kip)	Fv (kip)	Lt/L1 (ft)	Lv (ft)	H₂ (in)	Hmin (in)
TL-1	18 or above	13.5	4.5	4.5	4.0	18.0	18.0	18.0
TL-2	18 or above	27.0	9.0	4.5	4.0	18.0	20.0	18.0
TL-3	29 or above	71.0	18.0	4.5	4.0	18.0	19.0	29.0
TL-4 (a)	36	68.0	22.0	38.0	4.0	18.0	25.0	36.0
TL-4 (b)	between 36 and 42	80.0	27.0	22.0	5.0	18.0	30.0	36.0
TL-5 (a)	42	160.0	41.0	80.0	10.0	40.0	35.0	42.0
TL-5 (b)	greater than 42	262.0	75.0	160.0	10.0	40.0	43.0	42.0
TL 6		175.0	58.0	80.0	8.0	40.0	56.0	90.0

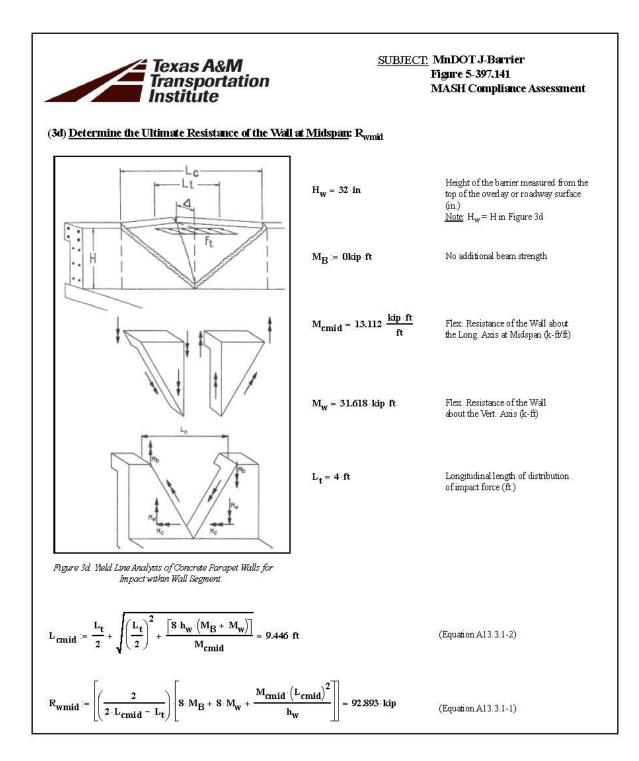
References:

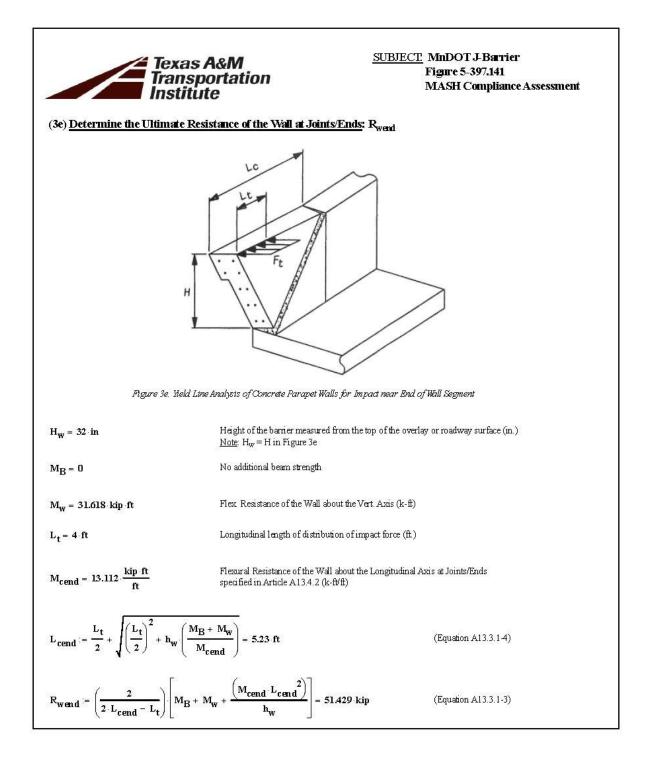

• TL-1 and TL-2 Design Forces are from AASHTO LRFD Section 13 Table A13.2-1

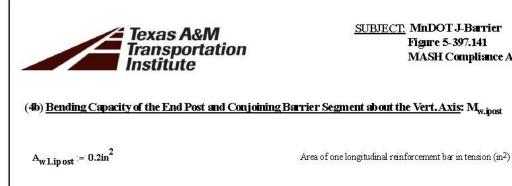

•	TL-3 Design Forces are from research	conducted under	NCHRPPro	ject 20-07 Tasl	ĸ 395
			한 것 같은 가지 그가 가슴 것 같아요. 영영		· · · · · · · · · · · · · · · · · · ·


 TL-4 (a), TL-4 (b), TL-5 (a), and TL-5 (b) Design Forces are from research conducted under NCHRP Project 22-20(2)


TL := 3	Test Level
F _t = 71kip	Transverse Impact Force
$L_t := 4ft$	Longitudinal Length of Distribution of Impact Force
H _e := 19in	Height of Equivalent Transverse Load
$\mathbf{h}_{\mathbf{e}} := \mathbf{H}_{\mathbf{e}} + \mathbf{t}_{0}$	h _e = 19 in Total Height of Equivalent Transverse Load (in.)
H _{min} := 29in	Minimum height of a MASH TL-3 barrier (in.)
H _w = 32 in	Height of the concrete barrier measured from the top of the roadway surface/overlay (in.)


Tex Tran Inst	as A&M sportation itute	<u>SUBJECT</u> . MnDOT J-Barrier Figure 5-397.141 MASH TL-3 Compliance Assessment
(2) <u>Stability Criteria:</u>		
H _{min} = 29∙in	Minimum height of a MASHTL-3 bar	ier (n.)
$H_w = 32 \cdot in$	Height of the concrete barrier measured	from the top of the roadway surface/oved ay (in.)
Minimum_Height_of_Barri	er_Check := "OK" if H _w ≥ H _m "NOT OKAY" othe	in rwise
	Minimum_Height_of_Barrier_Check	= "OK"




<u>SUBJECT</u> MnDOT J-Barrier Figure 5-397.141 MASH Compliance Assessment

(3) LRFD Strength Analysis of the Barrier per AASHTO Section 13 Specifications - Summary of Results:

<u>) ERFD Su tugur Analysis of the Darrer per AASi</u>	110 Section 155pecificatoris - Summa yor Results.
$H_{W} = 32 \cdot in$	Height of the Concrete Barrier measured from the top of the roadway surface (in.)
R _{wmid} = 92.893 kip	Ultimate Resistance of the wall at midspan (kip)
R _{wend} = 51.429 kip	Ultimate Resistance of the wall at the end of the wall or at a joint (kip)
H _e = 19 in	Height of the Transverse Impact Force, $F_t(in.)$
$R_{R.mid} := R_{wmid} \left(\frac{h_w}{h_e} \right) = 156.451 \text{ kip}$	Structural Capacity of the Barrier at midspan located at $\rm H_{e}$ (kip)
$R_{R.end} := R_{wend} \left(\frac{h_w}{h_e} \right) = 86.617 \text{ kip}$	Structural Capacity of the Barrier at the end of the wall or at a joint located at $H_{\rm e}~(\!\rm kip)$
$F_t = 71 \cdot kip$	Transverse Impact Force located at H _e (kip)
Structural_Capacity_of_Barrier_at_Midspan_Check :=	"OK" if R _{R.mid} ≥F _t "NOT OKAY" otherwise
Structural_Capacity_of_Barrier	_at_Midspan_Check = "OK"
Structural_Capacity_of_Barrier_at_Ends_Check := ""	OK'' if R _{R.end} ≥F _t NOT OKAY'' otherwise
Structural_Capacity_of_Barrier	_at_Ends_Check = "OK"

Texas A&M Transportation Institute	<u>SUBJECT</u> : MnDOT J-Barrier Figure 5-397.141 MASH Compliance Assessment
(4) <u>Strength Analysis of the Integral End</u> 1	Post:
(4a) <u>Bending Capacity of the End Post and Conj</u>	oining Barrier Segment about the Long Axis: M _{c.ipost}
$\mathbf{b}_{c} = 12 \cdot \mathbf{in}$	Unit Width of Wall (in.)
Bending Capacity of End Post and Conjoining Barri Note: See <i>Agare 1</i> for a visual representation of the reinforce	ier Segment Considering only the Parapet Vertical Reinf.: ment bars.
$A_{v1.ipost} = 0.3 lin^2$	Average area of one vertical rainforcement leg in the tension zone at the end post and conjoining barrier segment (in ²)
s _{v.ipost} := 8.6875in	Average spacing of vertical reinforcement at the end post and conjoining barrier segment (in.) (7 bars over 4 feet)
$A_{v,ip,ost} = \left(\frac{b_c}{s_{v,ip,ost}}\right) \cdot A_{v1,ip,ost} = 0.428 \cdot in^2$	Total Area of vertical reinforment per unit length of the wall at the end post and conjoining barrier segment (in ²)
$a_{c.ip \text{ ost}} := \frac{A_{v.ip \text{ ost}} \cdot f_y}{0.85 \cdot f_c \cdot b_c} = 0.63 \cdot in$	Depth of Whitney Stress Block (in.)
d _{c.ip ost} := 8.6875in	Average extreme distance of tension parapet vertical reinforcement at the end post and conjoining barrier segment (in.)
$M_{c.ipost} := \frac{\left[A_{v.ipost} \cdot f_{y} \cdot \left(d_{c.ipost} - \frac{a_{c.ipost}}{2}\right)\right]}{b_{c}} = 1$	I.7.926kip ftFlexural Resistance of the end post and conjoining barrier segment about the Longitudinal Axis when considering the critical reinforcment specified in Article A13.3.1 (k-ft/ft)

Г

 $n_{wipost} = 4$

Number of longitudinal reinforcement bars acting in tension

Figure 5-397.141

MASH Compliance Assessment

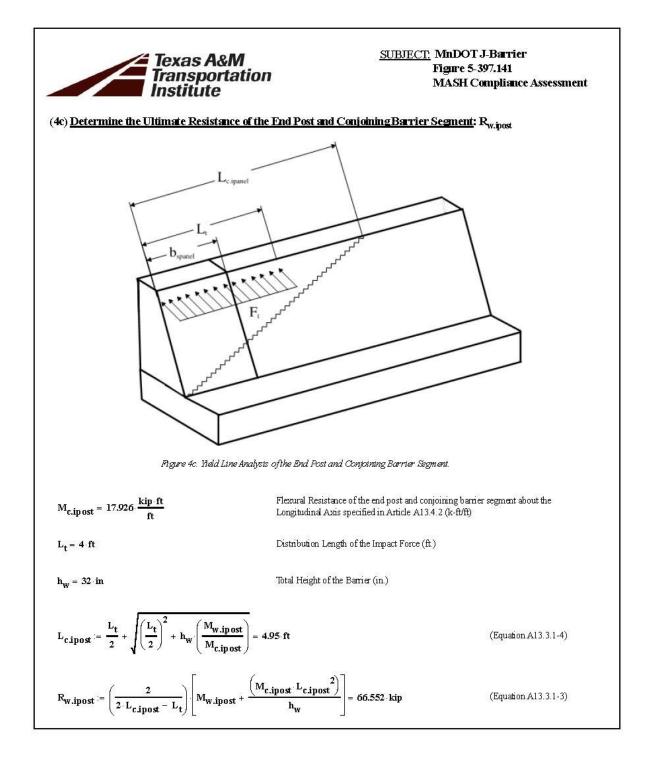
A_{w.ipost} = A_{w1.ipost} n_{w.ipost} = 0.8 in²

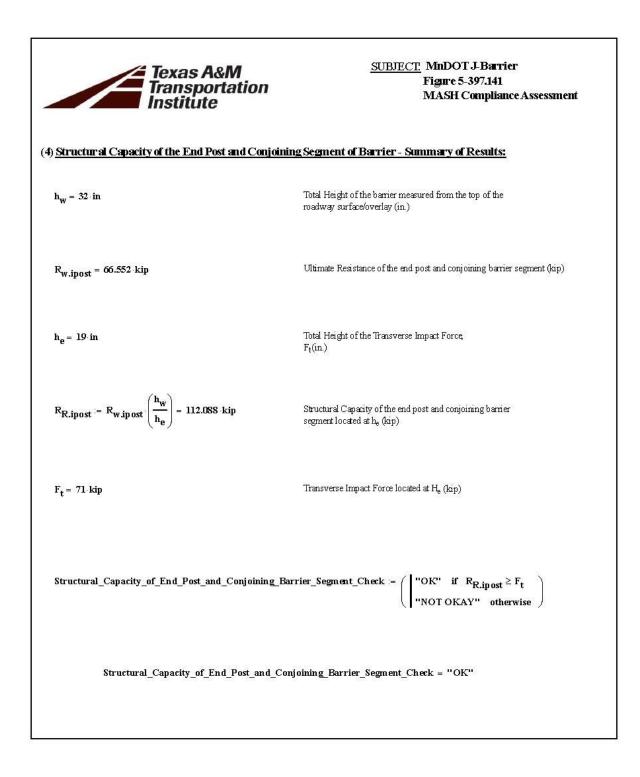
 $h_w = 32 \cdot in$

 $a_{w.ipost} := \frac{A_{w.ipost} \cdot f_{y}}{0.85 \cdot f_{c} \cdot h_{w}} = 0.441 \cdot in$

 $M_{w.ipost} := A_{w.ipost} \cdot f_y \cdot \left(d_{w.ipost} - \frac{a_{w.ipost}}{2} \right) = 31.618 \cdot kip \cdot ft$

Total Area of longitudinal reinforcement bars acting in tension (in²)


Total height of the barrier (in.)


Depth of the Whitney Stress Block (in.)

dwipost = 8.125 in

Average extreme distance of tension longitudinal reinforcement (in.)

Flexural Resistance of the end post and conjoining barrier segment about the Vertical Axis specified in Article A13.3.1 (k-ft)

SUBJECT: MnDOT J-Barrier Figure 5-397.141 MASH Compliance Assessment

(5) Shear Capacity of the Barrier:

λ := 1.0	Concrete Modification Factor
T _w := 9in	Top Width of the parapet (in.)
h _c := 15in	Depth of the shear zone at the critical segment (top most portion) of the barrier (in.)
d _c := 6.0in	Distance from compression face to the tension reinforcement (in.)
$L_t = 4 \cdot ft$	Length of the distribution of the impact force (ft.)
$f_c = 4 \cdot ksi$	Concrete parapet compressive strength (ksi)

(5a) Shear Capacity of an Interior Segment of the Barrier: V_{cint}

$$\begin{aligned} \mathbf{A}_{c.int} &\coloneqq \left[\left(\mathbf{L}_{t} + \mathbf{d}_{c} \right) \cdot \mathbf{T}_{w} \right] + 2 \cdot \left[\left(\mathbf{h}_{c} + \frac{\mathbf{d}_{c}}{2} \right) \cdot \mathbf{T}_{w} \right] = 810 \cdot \mathrm{in}^{2} \\ \mathbf{V}_{c.int} &\coloneqq 2 \cdot \mathbf{\lambda} \cdot \left[\left(\sqrt{\frac{\mathbf{f}_{c}}{\mathrm{psi}}} \right) \cdot \mathrm{psi} \right] \cdot \mathbf{A}_{c.int} = 102.458 \cdot \mathrm{kip} \end{aligned}$$

Concrete Parapet Shear Zone Area of an Interior Segment of the Barrier (in^2)

Shear Capacity of an Interior Segment of the Barrier (kip)

(5b) <u>Shear Capacity of an End Segment of the Barrier</u>: \mathbf{V}_{cend}

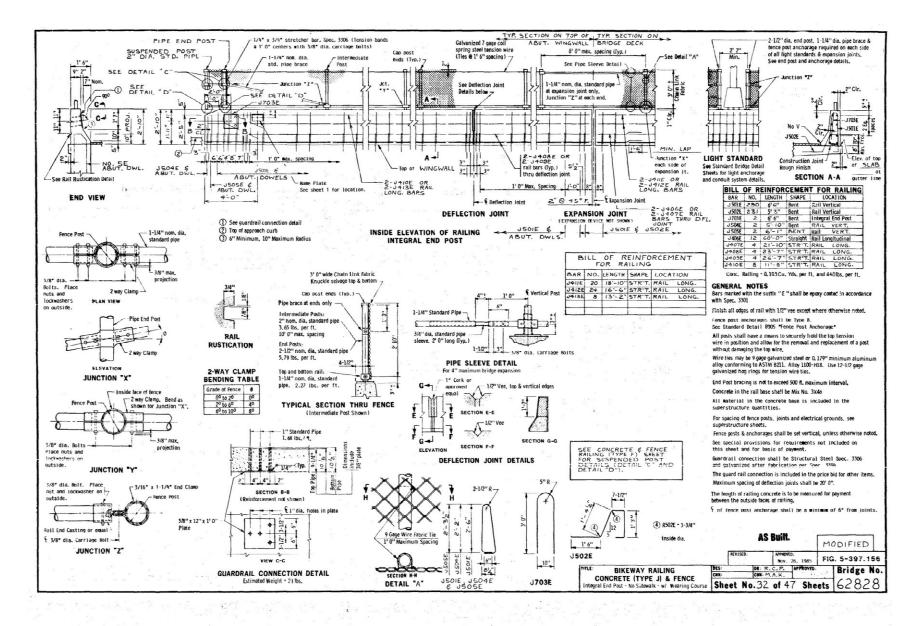
$\mathbf{A}_{\mathbf{c},\mathbf{end}} := \left(\mathbf{L}_{\mathbf{t}} + \frac{\mathbf{d}_{\mathbf{c}}}{2}\right) \cdot \mathbf{T}_{\mathbf{W}} + \left(\mathbf{h}_{\mathbf{c}} + \frac{\mathbf{d}_{\mathbf{c}}}{2}\right) \cdot \mathbf{T}_{\mathbf{W}} = 621 \cdot \mathbf{in}^2$	Concrete Parapet Shear Zone Area of an End Segment of the Barrier (n^2)
$V_{c.end} = 2 \cdot \lambda \left[\left(\sqrt{\frac{\mathbf{f}_{c}}{psi}} \right) \cdot psi \right] A_{c.end} = 78.551 \cdot kip$	Shear Capacity of an End Segment of the Barrier (kip)
$\mathbf{V}_{c} := \min \left(\mathbf{V}_{c.int}, \mathbf{V}_{c.end} \right) = 78.551 \cdot kip$	Critical Shear Capacity of the Barrier (kip)
$F_t = 71 \text{ kip}$	Transverse Impact Force (kip)
$\label{eq:shear_Capacity_of_Barrier_Check} := \left \begin{array}{c} "OK" & \text{if } V_c \geq F_t \\ "NOT OK" & \text{otherwise} \end{array} \right $	= "OK" e

<u>SUBJECT</u> MnDOT J-Barrier Figure 5-397.141 MASH TL-3 Compliance Assessment

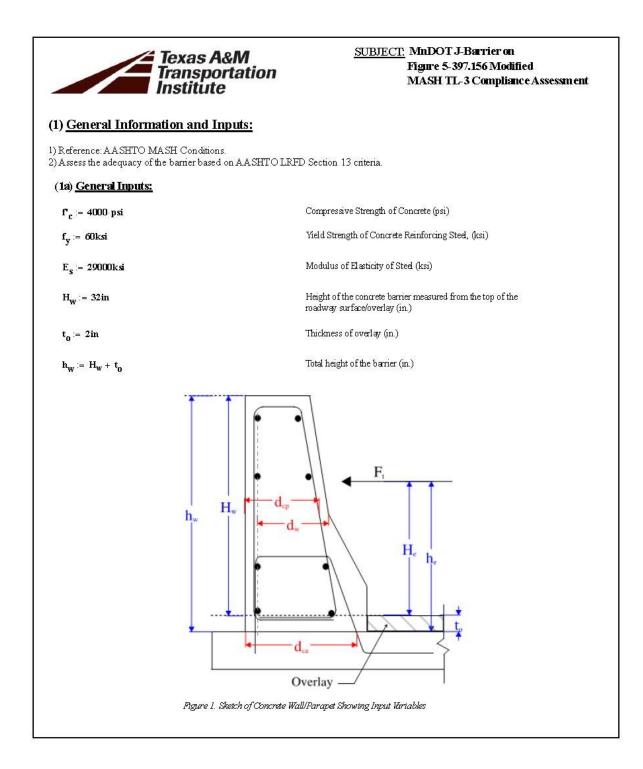
(6) Conclusions:

Minimum_Height_of_Barrier_Check = "OK"

Structural_Capacity_of_Barrier_at_Midspan_Check = "OK"


Structural_Capacity_of_Barrier_at_Ends_Check = "OK"

Structural_Capacity_of_End_Post_and_Conjoining_Barrier_Segment_Check = "OK"


Shear_Capacity_of_Barrier_Check = "OK"

The J-Barrier from Figure 5-397.141 does satisfy all MASHTL-3 Criteria

APPENDIX B7: J BARRIER ON BRIDGE NO. 62828 (FIGURE 5-397-156 MODIFIED)

REVED IN SHEET AN INVALUATION OF A SUPER VALUE OF COMES THE ACCOUNT AND A SUPER VALUE OF A SUPERVISE OF A SUPERVISE OF A SUPERVISE AND A SUPER

Texas A Transpo Institute	& SUBJECT: MnDOT J-Barrier on Figure 5-397.156 Modified Figure 5-397.156 Modified MASH TL-3 Compliance Assessment Master TL-3 Compliance Assessment	
(1b) <u>Concrete Parapet Inputs:</u>		
Parapet Vertical Reinforcement Inputs:		
$A_{vpl.mid} = 0.31in^2$	Area of one parapet vertical reinforcement leg in the tension zone at midspan (n^2)	
s _{vp.mid} = 12in	Spacing of parapet vertical reinforcement at midspan (in.)	
d _{cp.mid} = 9in	Extreme distance of parapet vertical reinforcement in tension at midspan (in.)	
A _{vpl.end} = 0.31in ²	Area of one parapet vertical reinforcement leg in the tension zone at joints/ends (in ²)	
s _{vp.end} = 9.6in	Spacing of parapet vertical reinforcement at joints/ends (in.)	
d _{cp.end} = 9in	Extreme distance of tension parapet vertical reinforcement at joints/ends (in.)	
Longitudinal Reinfor cement Inputs:		
A _w = 0.8in ²	Area of longitudinal reinforcement bars in tension (in^2)	
$\mathbf{d}_{\mathbf{W}} \coloneqq \mathbf{Sin}$	Extreme distance of tension longitudinal reinforcement of wall (in.)	

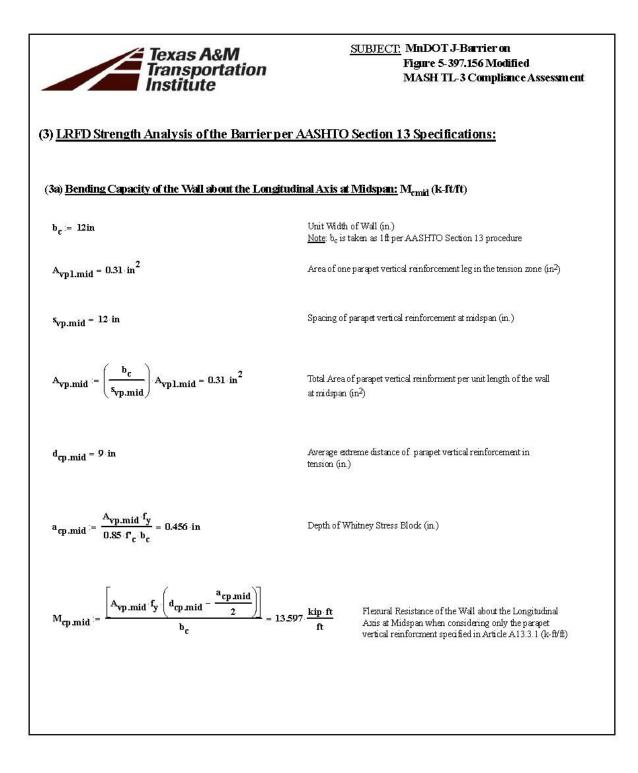
Texas A Transpor Institute	SUBJECT: MnDOT J-Barrier on Figure 5-397.156 Modified rtation MASH TL-3 Compliance Assessment			
(1b-conti.) <u>Concrete Parapet Inputs:</u>				
<u>DeckAnchorage Vertical Reinforcemen</u>	t Inputs:			
L _{proj_J502E} := 10in	Projected length of J502E reinforcement over the slab (in.)			
L _{wid_} J502E := 7.5in	Outer width of J502E reinforcement (in.)			
Cover := 2in	Cover clear distance (in.)			
Ratio_{ $3502E} := \frac{5}{12}$	Inclined angle of R502E reinforcement			
d _{b_1502E} := 0.625in	Nominal diameter of J502E reinforcement (#5 bar)			
$d_{ca} := L_{wid_J502E} + L_{proj_J502E} \cdot Ratio_{J502E} + Cover - \frac{1}{2}d_{b_J502E} = 13.354$ in				
	Extreme distance of tension deck anchorage vertical reinforcement (in,)			
$A_{val.mid} = 0.31in^2$	Area of one deck anchorage vertical reinforcement leg in the tension zone at midspan (in^2)			
s _{va.mid} := 12in	Spacing of deck anchorage vertical reinforcement at midspan (in.)			
$\mathbf{d}_{\mathbf{ca.mid}} \coloneqq \mathbf{d}_{\mathbf{ca}} = 13.354$ in	Extreme distance of tension deck anchorage vertical reinforcement of the wall at midspan(in.)			
$A_{val.end} = 0.31in^2$	Area of one deck anchorage vertical reinforcement leg in the tension zone at joints/ends (in^2)			
s _{va.end} = 9.6in	Spacing of deck anchorage vertical reinforcement at joints/ends (in.)			
$\mathbf{d_{ca.end}} := \mathbf{d_{ca}} = 13.354 \cdot \mathbf{in}$	Extreme distance of tension deck anchorage vertical reinforcement at joints/ends (in.)			

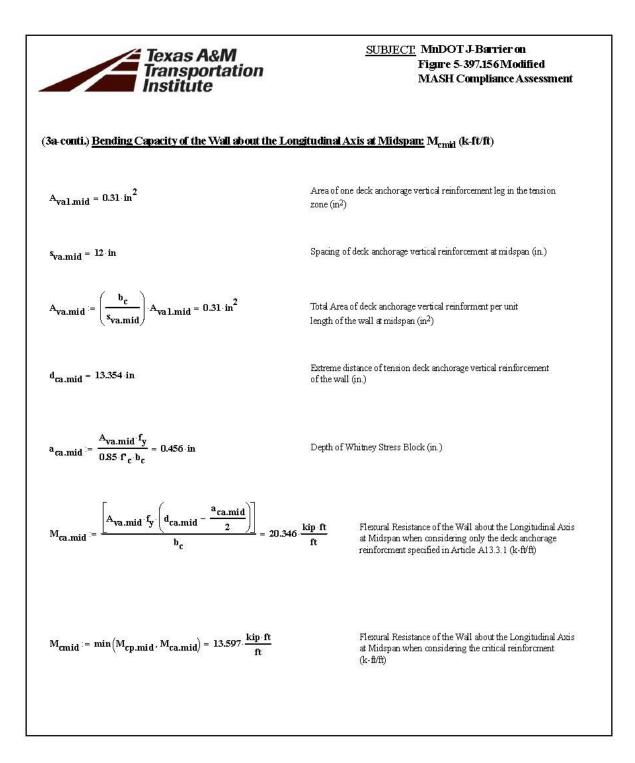
<u>SUBJECT.</u> MnDOT J-Barrier on Figure 5-397.156 Modified MASH TL-3 Compliance Assessment

(1c) Design Force Inputs:

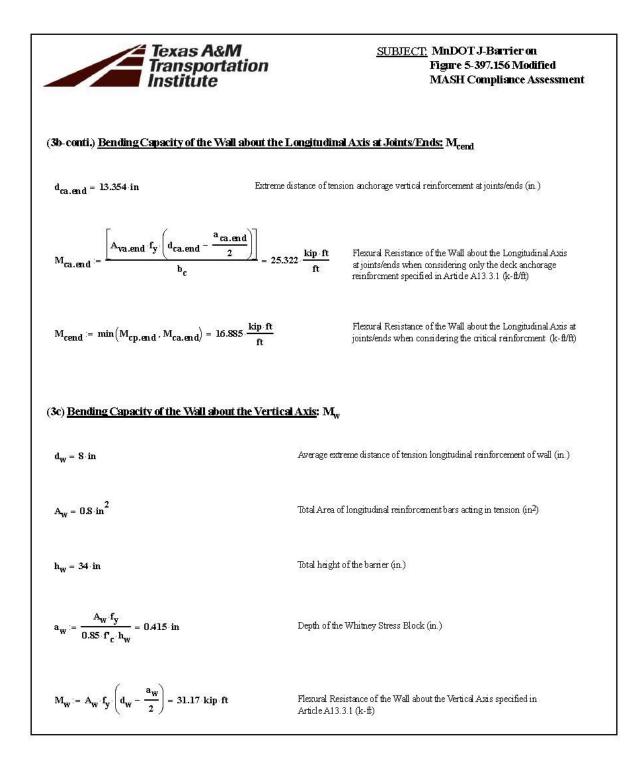
Test Level	Rail Height (in.)	Ft (kip)	FL (kip)	Fv (kip)	Lt/LL (ft)	Lv (ft)	He (in)	Hmin (in)
TL-1	18 or above	13.5	4.5	4.5	4.0	18.0	18.0	18.0
TL-2	18 or above	27.0	9.0	4.5	4.0	18.0	20.0	18.0
TL-3	29 or above	71.0	18.0	4.5	4.0	18.0	19.0	29.0
TL-4 (a)	36	68.0	22.0	38.0	4.0	18.0	25.0	36.0
TL-4 (b)	between 36 and 42	80.0	27.0	22.0	5.0	18.0	30.0	36.0
TL-5 (a)	42	160.0	41.0	80.0	10.0	40.0	35.0	42.0
TL-5 (b)	greater than 42	262.0	75.0	160.0	10.0	40.0	43.0	42.0
TL 6		175.0	58.0	80.0	8.0	40.0	56.0	90.0

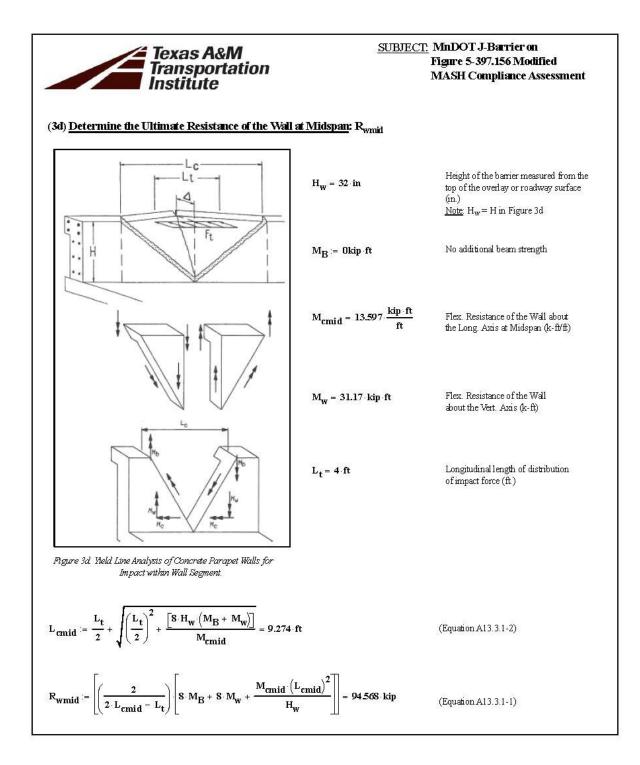
Design Forces for Traffic Railings

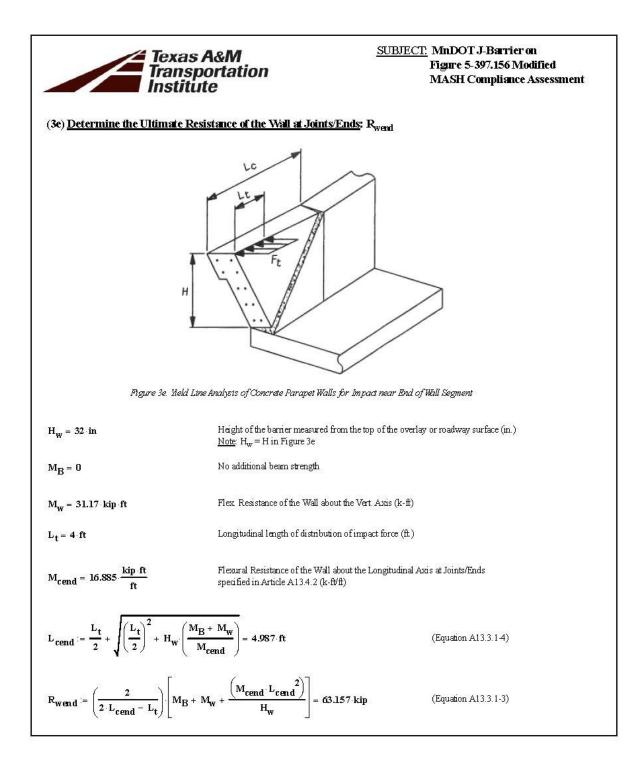

References:


- TL-1 and TL-2 Design Forces are from AASHTO LRFD Section 13 Table A13.2-1
- TL-3 Design Forces are from research conducted under NCHRP Project 20-07 Task 395

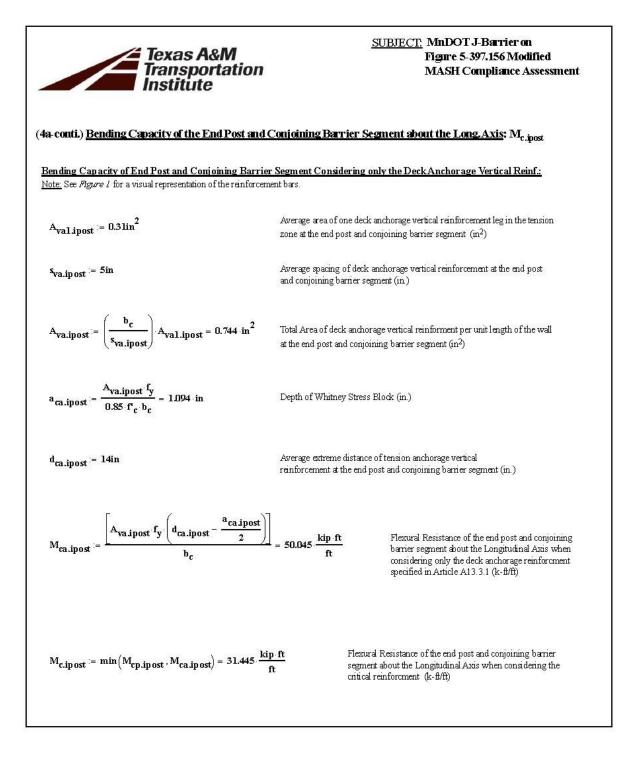
•	TL-4 (a), TL-4 (b), TL-5 (a), and TL-5 (b) Design Forces are from research conducted under
	NCHRP Project 22-20(2)

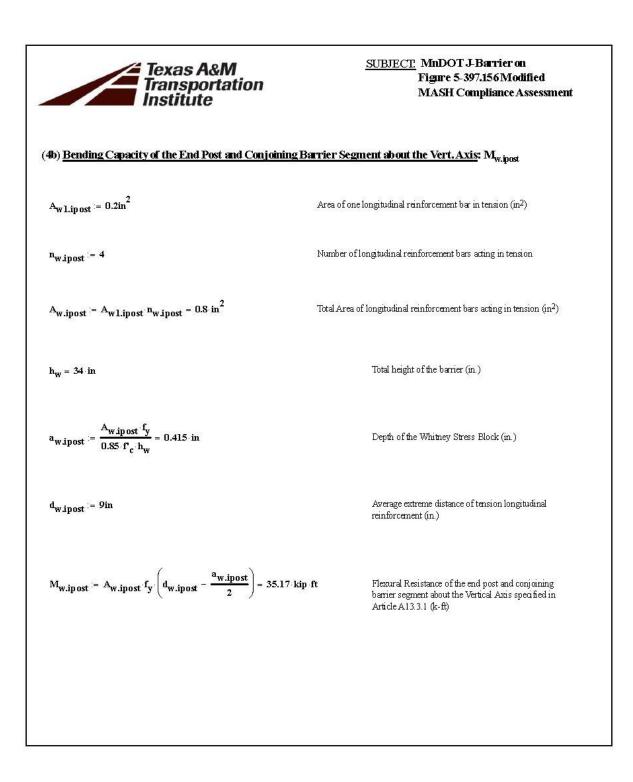

TL := 3	Test Level
F _t = 71kip	Transverse Impact Force
$L_t = 4ft$	Longitudinal Length of Distribution of Impact Force
H _e := 19in	Height of Equivalent Transverse Load
H _{min} = 29in	Minimum height of a MASH TL-3 barrier (in.)
$H_w = 32 \cdot in$	Height of the concrete barrier measured from the top of the roadway surface/overlay (in.)

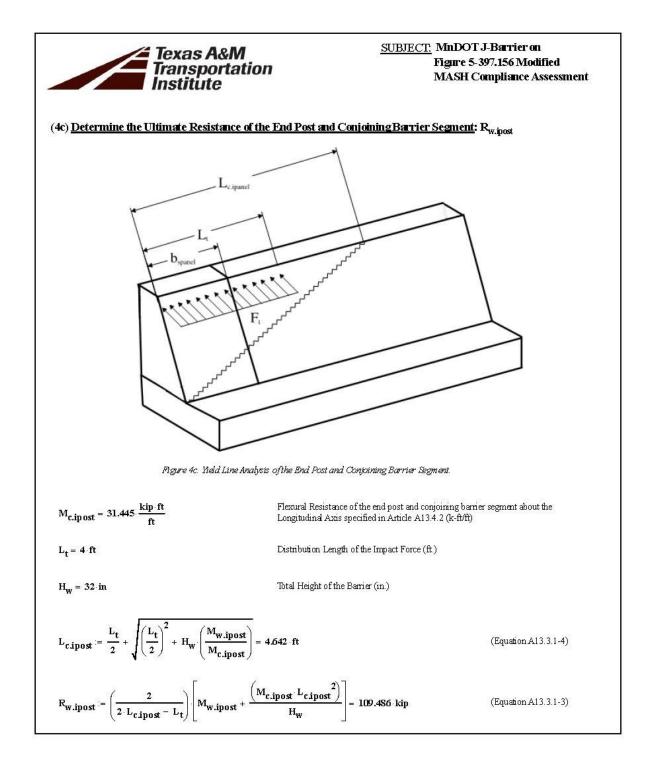

Texas A& Transport Institute	M tation	<u>SUBJECT</u> : MnDOT J-Barrier on Figure 5-397.156 Modified MASH TL-3 Compliance Assessment	
(2) <u>Stability Criteria:</u>			
H _{min} = 29 · in Minimu	m height of a MASHTL-3 barrier	r (m.)	
H _w = 32 in Height o	of the concrete barrier measured fro	om the top of the roadway surface/overlay (in.)	
Minimum_Height_of_Barrier_Check :	= "OK" if H _w ≥H _{min} "NOT OK" otherwise		
Minimum_	Height_of_Barrier_Check =	"OK"	

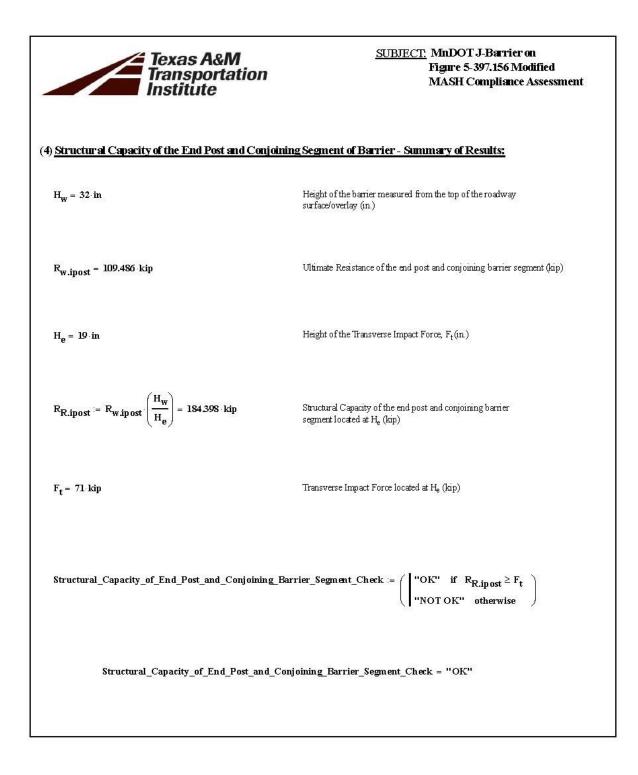


Texas A&M Transportat Institute	SUBJECT: MnDOT J-Barrier on Figure 5-397.156 Modified MASH Compliance Assessment
(3b) <u>Bending Capacity of the Wall about t</u>	<u>he Longitudinal Axis at Joints/Ends.</u> M _{cent}
$\mathbf{b}_{\mathbf{c}} = 12$ in	Unit Width of Wall (in.)
$A_{vpl.end} = 0.31 \cdot in^2$	Area of one parapet vertical reinforcement leg in the tension zone at joints/ends (in ²)
s _{vp.end} = 9.6 in	Spacing of parapet vertical reinforcement at joints/ends (in.)
$A_{vp.end} := \left(\frac{b_c}{s_{vp.end}}\right) A_{vp1.end} = 0.388 \text{ in}$	2 Total Area of parapet vertical reinforment per unit length of the wall at joints/ends (in ²)
$\mathbf{a}_{cp.end} = \frac{\mathbf{A}_{vp.end} \mathbf{f}_{y}}{0.85 \mathbf{f}_{c} \mathbf{b}_{c}} = 0.57$ in	Depth of Whitney Stress Block (in.)
d _{cp.end} = 9∙in	Average extreme distance of tension parapet vertical reinforcement at joints/ends (in.)
$M_{cp.end} := \frac{\left[A_{vp.end} \cdot f_{y} \cdot \left(d_{cp.end} - \frac{a_{cp.en}}{2}\right)\right]}{b_{c}}$	$\frac{\mathbf{d}}{\mathbf{ft}} = 16.885 \cdot \frac{\mathbf{kip} \cdot \mathbf{ft}}{\mathbf{ft}} \qquad $
$A_{val.end} = 0.31 \text{ in}^2$	Area of one deck anchorage vertical reinforcement leg in the tension zone at joints/ends (in ²)
s _{va.end} = 9.6 in	Spacing of deck anchorage vertical reinforcement at joints/ends (in.)
$\mathbf{A}_{va.end} := \left(\frac{\mathbf{b}_{c}}{\mathbf{s}_{va.end}}\right) \cdot \mathbf{A}_{val.end} = 0.388 \cdot \mathbf{n}^{2}$	2 Total Area of deck anchorage vertical reinforment per unit length of the wall at joints/ends (in ²)
$a_{ca.end} := \frac{A_{va.end} \cdot f_y}{0.85 \cdot f_c \cdot b_c} = 0.57$ in	Depth of Whitney Stress Block (in.)








Texas A&M Transportation Institute	<u>SUBJECT</u> MnDOT J-Barrier on Figure 5-397.156 Modified MASH Compliance Assessment	
(3) <u>LRFD Strength Analysis of the Barrier per AA</u>	SHTO Section 13 Specifications - Summary of Results:	
$H_w = 32 in$	Height of the Concrete Barrier measured from the top of the roadway surface (in.)	
R _{wmid} = 94 <i>56</i> 8 kip	Ultimate Resistance of the wall at midspan (kip)	
R _{wend} = 63.157 kip	Ultimate Resistance of the wall at the end of the wall or at a joint (kip)	
$H_e = 19 \cdot in$	Height of the Transverse Impact Force, $F_{t}(in.)$	
$R_{R.mid} := R_{wmid} \cdot \left(\frac{H_w}{H_e}\right) = 159.272 \cdot kip$	Structural Capacity of the Barrier at midspan located at $H_{\!e}\left(kip\right)$	
$R_{R.end} = R_{wend} \left(\frac{H_w}{H_e} \right) = 106.369 \text{ kip}$	Structural Capacity of the Barrier at the end of the wall or at a joint located at $H_e~(kip)$	
$F_t = 71 \cdot kip$	Transverse Impact Force located at H _e (kip)	
Structural_Capacity_of_Barrier_at_Midspan_Check := "OK" if R _{R.mid} ≥ F _t "NOT OKAY" otherwise		
Structural_Capacity_of_Barrier_at_Midspan_Check = "OK"		
$\label{eq:structural_Capacity_of_Barrier_at_Ends_Check := "OK" if $R_{R.end} \geq F_t$ "NOT OKAY" otherwise P_t and P_t and$		
Structural_Capacity_of_Barrier_at_Ends_Check = "OK"		

SUBJECT: MDDOT J. Barrier on
Figure 5. 397. 156 Modified
MASH Compliance Assessment(4) Strength Analysis of the Integral End Post:(40) Bending Capacity of the End Post and Conjoining Barrier Segment about the Long Axis:
$$M_{c, host}$$
. $b_c - 12$ inUnit Width of Wall (m.)Bending Capacity of End Post and Conjoining Barrier Segment Considering only the Parapet Verical Reinff:
Muss See Agaes 1 for a visual representation of the reinforcement bars. $A_{c-12 in}$ Unit Width of Wall (m.)Bending Capacity of End Post and Conjoining Barrier Segment Considering only the Parapet Verical Reinff:
Muss See Agaes 1 for a visual representation of the reinforcement bars. $A_{cp, 1, post} = 0.31 ln^2$ Average area of one parapet vertical reinforcement log in the transion zone at
the end post and conjoining barrier segment (m.) $A_{cp, 1, post} := 5in$ Average apocing of propet vertical reinforcement at the end post and
conjoining barrier segment (m.) $A_{cp, 1, post} := \left(\frac{b_c}{A_{cp, 1, post}}\right) A_{cp, 1, 1, post} = 0.744 in^2Total Area of parapet vertical reinforment per unit length of the well at the endpost and conjoining barrier segment (m.) $a_{cp, 1, post} := 9in$ Average entreme distance of transion paraget vertical reinforcement at the
end post and conjoining barrier segment (m.) $M_{cp, 1, post} := 9in$ Average entreme distance of transion paraget vertical reinforcement at the
end post and conjoining barrier segment (m.) $M_{cp, 1, post} := 9in$ Average entreme distance of transion paraget vertical reinforcement at the
end post and conjoining barrier segment (m.) $M_{cp, 1, post} := 9i$$

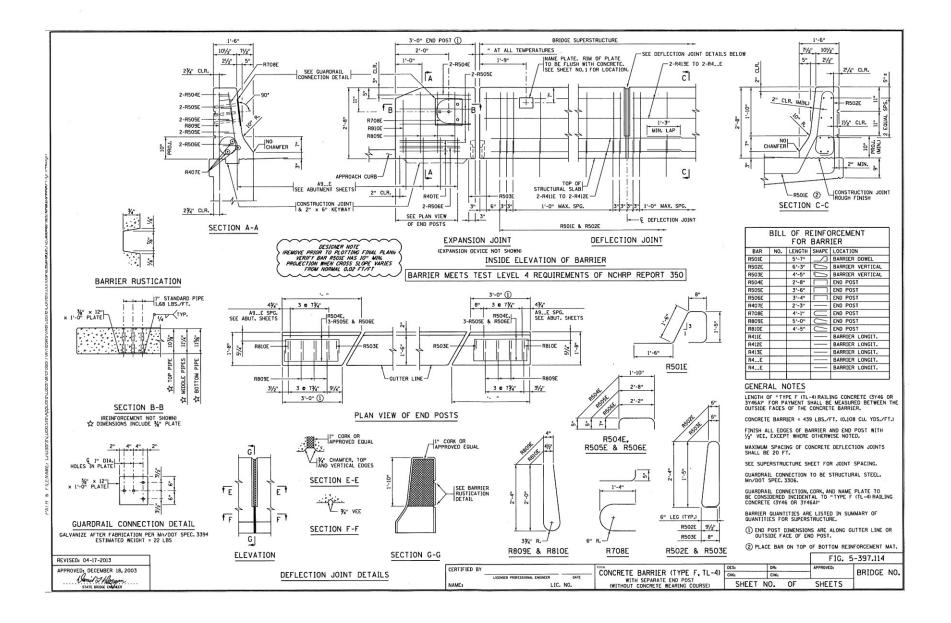
Texas As Transpor Institute	M tation	<u>SUBJECT</u> : MnDOT J-B artier on Figure 5-397.156 Modified MASH Compliance Assessment	
(5) <u>Shear Capacity of the Barrie</u>	<u>r:</u>		
$\lambda = 1.0$	Concrete Modificati	on Factor	
T _w := 9in	Top Width of the pa	rapet (in.)	
h _c = 15in	Depth of the shear 2	zone at the critical segment (top most portion) of the barrier (in.)	
d _c := 8.25in	Distance from comp	pression face to the tension reinforcement (in.)	
$L_t = 4 \cdot ft$	Length of the distrib	Length of the distribution of the impact force (ft.)	
$f_c = 4 ksi$	Concrete parapet co	mpressive strength (ksi)	
$V_{c,int} = 2 \cdot \lambda \cdot \left[\left(\sqrt{\frac{r_c}{psi}} \right) \cdot psi \right] A_{c,int} =$ (5b) <u>Shear Capacity of an End Segm</u>		Shear Capacity of an Interior Segment of the Barrier (kip)	
(S0) <u>Shear Capacity of an End Segni</u> $A_{c.end} := \left(L_{t} + \frac{d_{c}}{2}\right) \cdot T_{w} + \left(h_{c} + \frac{d_{c}}{2}\right)$		Concrete Parapet Shear Zone Area of an End Segment of	
$V_{c.end} = 2 \cdot \lambda \left[\left(\sqrt{\frac{\Gamma_c}{psi}} \right) \cdot psi \right] A_{c.end}$	/	the Barrier (in ²) Shear Capacity of an End Segment of the Barrier (kip)	
	cip	Critical Shear Capacity of the Barrier (kip)	
$V_{c} := \min(V_{c,int}, V_{c,end}) = 81.112 \cdot 1$			
$V_c := min(V_{c.int}, V_{c.end}) = 81.112 \cdot F_t = 71 \cdot kip$		Transverse Impact Force (kip)	

<u>SUBJECT</u> MnDOT J-Barrier on Figure 5-397.156 Modified MASH TL-3 Compliance Assessment

(6) Conclusions:

Minimum_Height_of_Barrier_Check = "OK"

Structural_Capacity_of_Barrier_at_Midspan_Check = "OK"


Structural_Capacity_of_Barrier_at_Ends_Check = "OK"

Structural_Capacity_of_End_Post_and_Conjoining_Barrier_Segment_Check = "OK"

Shear_Capacity_of_Barrier_Check = "OK"

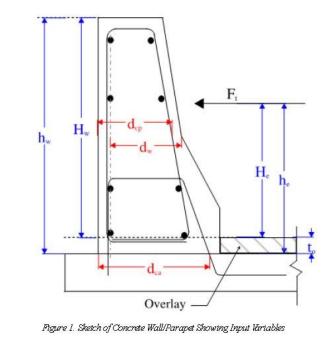
The J-Barrier on Bridge No. 62828 (Type J) does satisfy all MASH TL-3 Criteria

APPENDIX B8: F BARRIER ON FIGURE 5-397.114

<u>SUBJECT</u> MnDOT F-Barrier Figure 5-397.114 MASH Compliance Assessment

(1) General Information and Inputs:

1) Reference: AASHTO MASH Conditions.


2) Assess the adequacy of the barrier based on AASHTO LRFD Section 13 criteria.

(1a) General Inputs:

 $\mathbf{h}_{\mathbf{W}} := \mathbf{H}_{\mathbf{W}} + \mathbf{t}_{\mathbf{0}}$

 $\mathbf{f}_{\mathbf{c}} := 4000 \cdot \mathbf{psi}$ Compressive Strength of Concrete (psi) $\mathbf{f}_{\mathbf{y}} := 60 \, \mathrm{ksi}$ Yield Strength of Concrete Reinforcing Sted, (ksi) $\mathbf{E}_{\mathbf{s}} := 29000 \, \mathrm{ksi}$ Modulus of Elasticity of Sted (ksi) $\mathbf{H}_{\mathbf{w}} := 32 \, \mathrm{in}$ Height of the concrete barrier measured from the top of the roadway surface/overlay (in.) $\mathbf{t}_{\mathbf{o}} := 0 \, \mathrm{in}$ Thickness of overlay (in)

Total height of the barrier (in.)

Texas A Transpo Institute	& <u>SUBJECT</u> : MnDOT F-Barrier Figure 5-397.114 MASH Compliance Assessment
(1b) <u>Concrete Parapet Inputs:</u>	
Parapet Vertical Reinforcement Inputs:	
$A_{vpl.mid} = 0.31in^2$	Area of one parapet vertical reinforcement leg in the tension zone at midspan (in ²)
s _{vp.mid} := 12in	Spacing of parapet vertical reinforcement at midspan (in.)
d _{cp.mid} := 10.688in	Extreme distance of parapet vertical reinforcement in tension at midspan (in.)
$A_{vpl.end} = 0.31in^2$	Area of one parapet vertical reinforcement leg in the tension zone at joints/ends (in^2)
s _{vp.end} := 9.6in	Spacing of parapet vertical reinforcement at joints/ends (in.) (5 bars over 48 inches)
d _{cp.end} := 10.688in	Extreme distance of tension parapet vertical reinforcement at joints/ends (in.)
Longitudinal Reinforcement Inputs:	
A _w := 0.8in ²	Area of longitudinal reinforcement bars in tension (in ²)
$\mathbf{d}_{\mathbf{W}} \coloneqq \mathbf{9.875in}$	Extreme distance of tension longitudinal reinforcement of wall (in.)

Texas As Transpor Institute	AM <u>SUB</u> Tation	<u>ECT.</u> MnDOT F-Barrier Figure 5-397.114 MASH Compliance Assessment		
(1b-conti.) <u>Concrete Parapet Inputs:</u>				
Deck Anchorage Vertical Reinforcement	Inputs:			
L _{proj_R501E} := 10in	Projected length of R502E reinforcement ov	er the slab (in.)		
L _{wid_R501E} = 8in	Width of R502E reinforcement (in.)			
Cover := 2.25in	Cover clear distance (in.)			
$Ratio_{R501E} := \frac{1}{3}$	Inclined angle of R\$02E reinforcement			
^d b_R501E = 0.625 in	Nominal diameter of R501Eranforcement (#5 bar)			
d _{ca} := L _{wid_R501E} + L _{proj_R501E} · F	$Ratio_{R501E} + Cover - \frac{1}{2}d_{b_{R501E}} =$	13.271 · in		
	Extreme distance of tension deck anchorage	vertical reinforcement (in,)		
$A_{val.mid} = 0.31in^2$	Area of one deck anchorage vertical reinforc	ement leg in the tension zone at midspan (in^2)		
s _{va.mid} = 12in	Spacing of deck anchorage vertical reinforce	ment æ midspan (in.)		
$\mathbf{d}_{\mathbf{ca.mid}} \coloneqq \mathbf{d}_{\mathbf{ca}} = 13.271 \text{ in}$	Extreme distance of tension deck anchorage	vertical reinforcement of the wall at midspan(in.)		
$A_{val.end} = 0.31in^2$	Area of one deck anchorage vertical reinforcement leg in the tension zone at joints/ends (in^2)			
s _{va.end} := 9.6in	Spacing of deck anchorage vertical reinforce feet average)	ment æjoints/ends (in.) (5 bars over 4		
$d_{ca,end} := d_{ca} = 13.271 \text{ in}$	Extreme distance of tension deck anchorage	vertical reinforcement at joints/ends (in.)		

SUBJECT: MnDOT F-Barrier Figure 5-397.114 MASH TL-3 Compliance Assessment

(1c) Design Force Inputs:

Design Forces for Traffic Railings

Test Level	Rail Height (in.)	Ft (kip)	FL (kip)	Fv (kip)	L _t /L _L (ft)	L _v (ft)	H _e (in)	H _{min} (in)
TL-1	18 or above	13.5	4.5	4.5	4.0	18.0	18.0	18.0
TL-2	18 or above	27.0	9.0	4.5	4.0	18.0	20.0	18.0
TL-3	29 or above	71.0	18.0	4.5	4.0	18.0	19.0	29.0
TL-4 (a)	36	68.0	22.0	38.0	4.0	18.0	25.0	36.0
TL-4 (b)	between 36 and 42	80.0	27.0	22.0	5.0	18.0	30.0	36.0
TL-5 (a)	42	160.0	41.0	80.0	10.0	40.0	35.0	42.0
TL-5 (b)	greater than 42	262.0	75.0	160.0	10.0	40.0	43.0	42.0
TL 6		175.0	58.0	80.0	8.0	40.0	56.0	90.0

References:

- TL-1 and TL-2 Design Forces are from AASHTO LRFD Section 13 Table A13.2-1
 TL-3 Design Forces are from research conducted under NCHRP Project 20-07 Task 395
 TL-4 (a), TL-4 (b), TL-5 (a), and TL-5 (b) Design Forces are from research conducted under NCHRP Project 22-20(2)

TL := 3	Test Level
F _t = 71kip	Transverse Impact Force
$\mathbf{L_t} := \mathbf{4ft}$	Longitudinal Length of Distribution of Impact Force
H _e := 19in	Height of Equivalent Transverse Load
$\mathbf{h}_{\mathbf{e}} = \mathbf{H}_{\mathbf{e}} + \mathbf{t}_{0}$	Total Height of Equivalent Trans. Load
H _{min} := 29in	Minimum height of a MASH TL-3 barrier (in.)
H _w = 32 in	Height of the concrete barrier measured from the top of the roadway surface/overlay (in.)

	Texas A&M Transportation Institute	F	AnDOT F-Barrier ignre 5-397.114 LASH TL-3 Compliance Assessment
(2) <u>Stability Criteria</u> :	i i		
H _{min} = 29 in	Minimum height of a MAS	HTL-3 barrier (in.)	
H _w = 32 in	Height of the concrete barri	er measured from the top of th	e roadway surface/overlay (in.)
Minimum_Height_of_	Barrier_Check := ''OK'' if ''NOT OK#	H _w ≥ H _{min} \Y'' otherwise	
	Minimum_Height_of_Barr	ier_Check = "OK"	

SUBJECT MnDOT F-Barrier Figure 5-397.114 MASH TL-3 Compliance Assessment

(3) LRFD Strength Analysis of the Barrier per AASHTO Section 13 Specifications:

(3a) Bending Capacity of the Wall about the Longitudinal Axis at Midspan: M_{emid} (k-ft/ft)

b_c := 12in

 $A_{vp1.mid} = 0.31 \text{ in}^2$

s_{vp.mid} = 12 in

 $A_{vp.mid} := \left(\frac{b_c}{s_{vp.mid}}\right) \cdot A_{vp1.mid} = 0.31 \cdot in^2$

d_{cp.mid} = 10.688 in

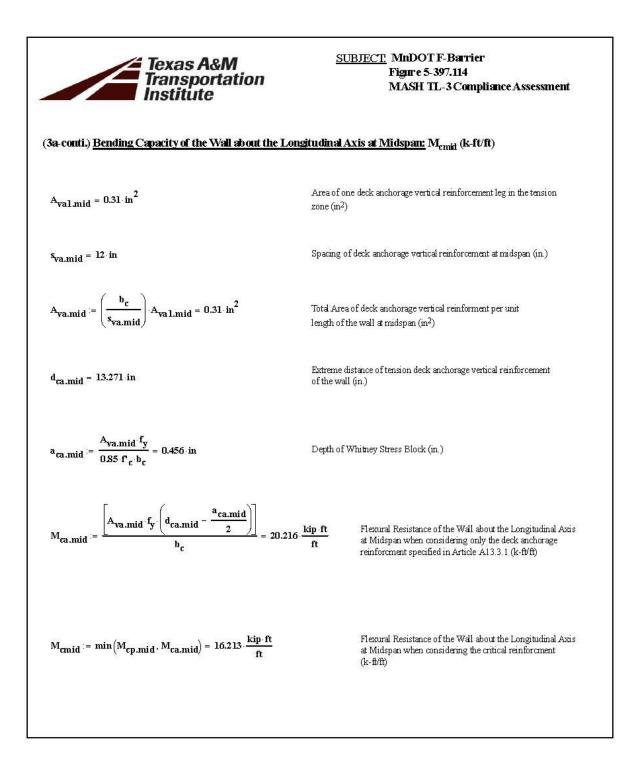
$$\mathbf{a}_{cp.mid} = \frac{\mathbf{A}_{vp.mid} \cdot \mathbf{f}_{y}}{0.85 \cdot \mathbf{f}_{c} \cdot \mathbf{b}_{c}} = 0.456 \text{ in}$$

 $\boxed{ \begin{array}{c} \mathbf{A_{vp.mid} \cdot f_y \cdot \left(d_{cp.mid} - \frac{a_{cp.mid}}{2} \right) \\ \mathbf{h}_{-} \end{array} } = 16213 \cdot \frac{\mathbf{kip} \cdot \mathbf{ft}}{\mathbf{ft}} \\ \end{array}$ M_{cp.mid} :=

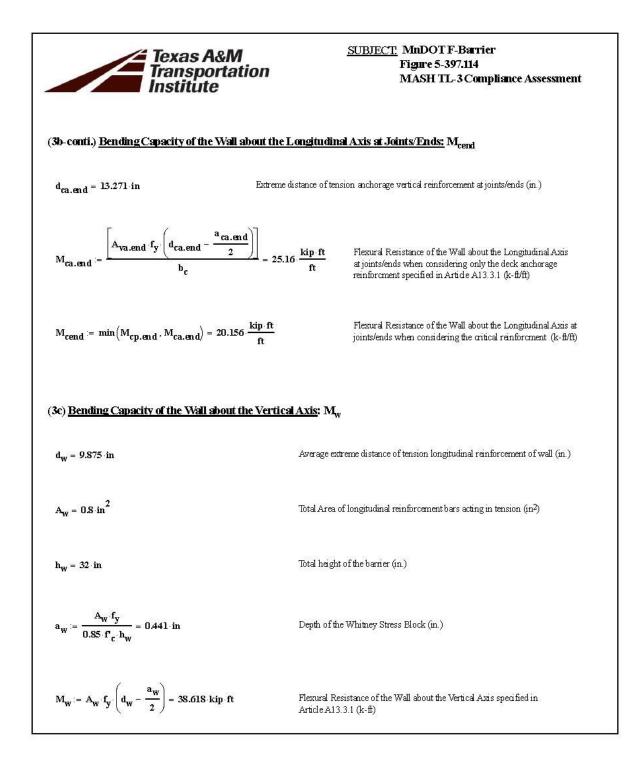
Area of one parapet vertical reinforcement leg in the tension zone (in2)

Spacing of parapet vertical reinforcement at midspan (in.)

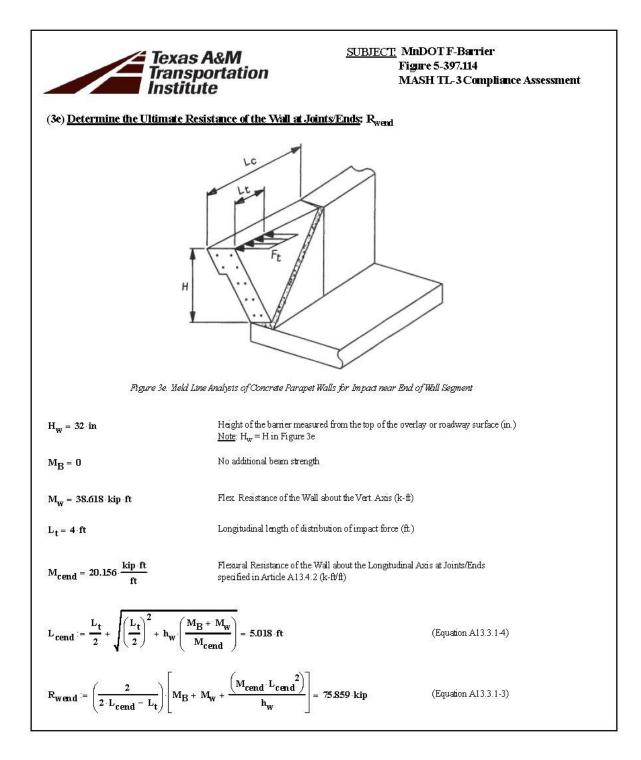
Note: bc is taken as 1ft per AASHTO Section 13 procedure

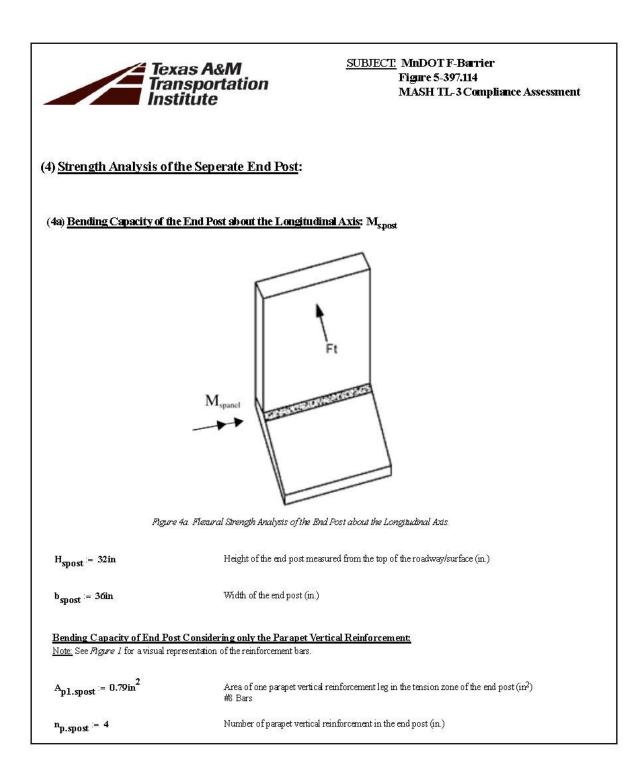

Unit Width of Wall (in.)

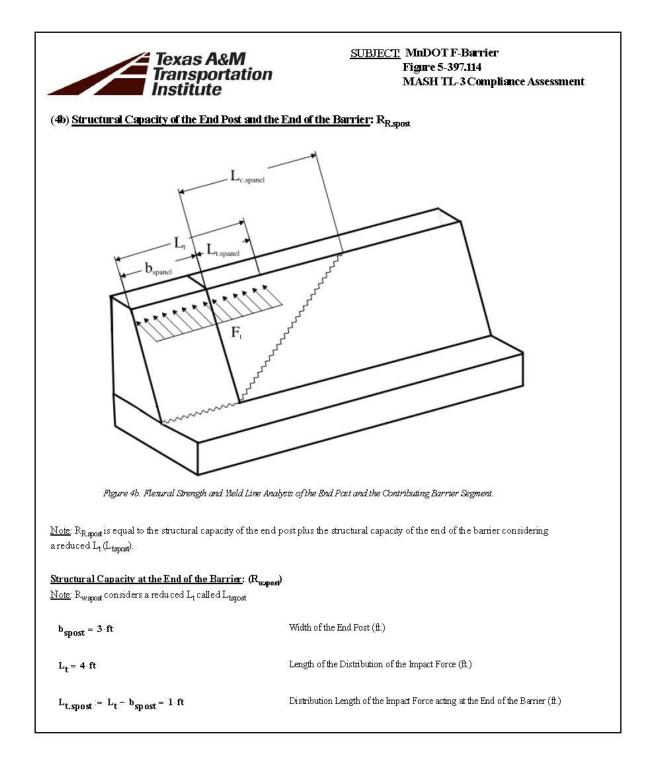
Total Area of parapet vertical reinforment per unit length of the wall at midspan (in²)

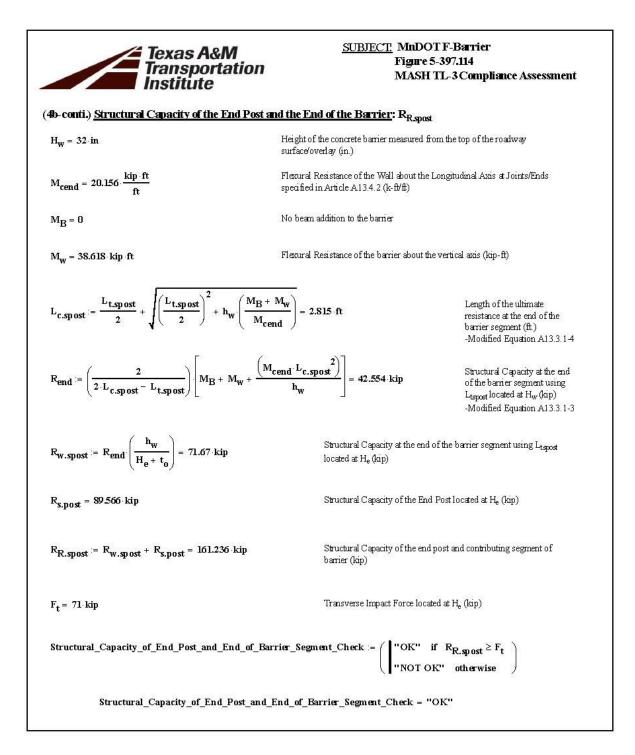

Average extreme distance of parapet vertical reinforcement in tension (in.)

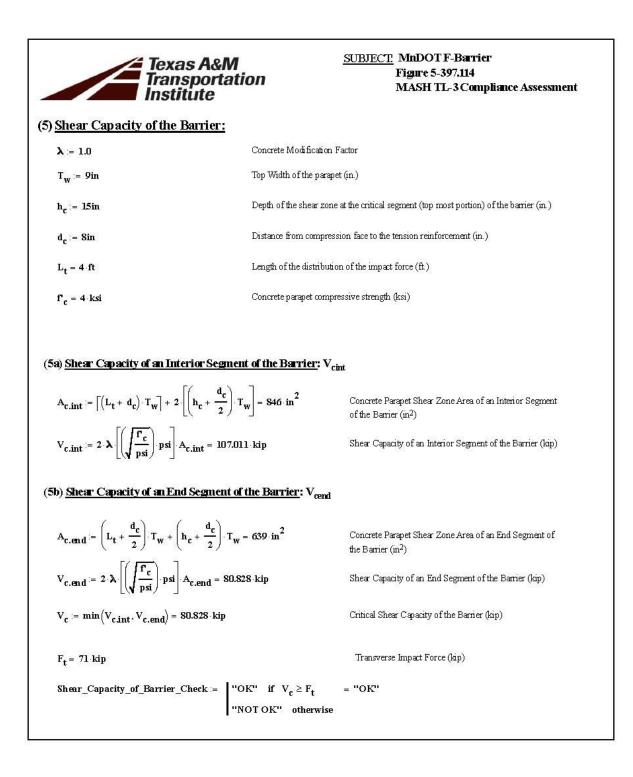
Depth of Whitney Stress Block (in.)

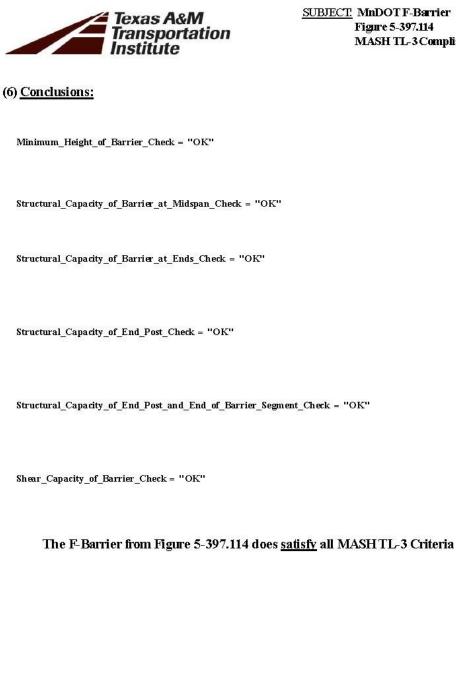

vertical reinforcment specified in Article A13.3.1 (k-ft/ft)


Texas A&M Transportatio Institute	SUBJECT: MnDOT F-Barrier Figure 5-397.114 MASH TL-3 Compliance Assessment
(3b) <u>Bending Capacity of the Wall about the</u>	e Longitudinal Axis at Joints/Ends. M _{cend}
$\mathbf{b}_{\mathbf{c}} = 12 \cdot \mathbf{in}$	Unit Width of Wall (in.)
$A_{vpl.end} = 0.31 \cdot in^2$	Area of one parapet vertical reinforcement leg in the tension zone at joints/ends (in 2)
s _{vp.end} = 9.6 in	Spacing of parapet vertical reinforcement at joints/ends (in.)
$A_{vp.end} := \left(\frac{b_c}{s_{vp.end}}\right) \cdot A_{vp1.end} = 0.388 \cdot in^2$	Total Area of parapet vertical reinforment per unit length of the wall at joints/ends (in ²)
$\mathbf{a}_{cp.end} := \frac{\mathbf{A}_{vp.end} \cdot \mathbf{f}_{y}}{0.85 \cdot \mathbf{f}_{c} \cdot \mathbf{b}_{c}} = 0.57 \cdot \mathbf{in}$	Depth of Whitney Stress Block (in.)
d _{cp.end} = 10.688 in	Average extreme distance of tension parapet vertical reinforcement at joints/ends (in.)
$M_{cp.end} := \frac{\left[A_{vp.end} \cdot f_{y} \cdot \left(d_{cp.end} - \frac{a_{cp.end}}{2}\right)\right]}{b_{c}}$	= 20.156 $\frac{\text{kip} \cdot \text{ft}}{\text{ft}}$ Flexural Resistance of the Wall about the Longitudinal Axis at Joints/Ends when considering only the parapet vertical reinforcment specified in Article A13.3.1 (k-ft/ft)
$A_{val.end} = 0.31 \cdot in^2$	Area of one deck anchorage vertical reinforcement leg in the tension zone at joints/ends (in ²)
s _{va.end} = 9.6 in	Spacing of deck anchorage vertical reinforcement at joints/ends (in.)
$A_{va.end} := \left(\frac{b_c}{s_{va.end}}\right) \cdot A_{val.end} = 0.388 \cdot in^2$	Total Area of deck anchorage vertical rainforment per unit length of the wall at joints/ends (in ²)
$\mathbf{a}_{\mathbf{ca.end}} := \frac{\mathbf{A}_{\mathbf{va.end}} \cdot \mathbf{f}_{\mathbf{y}}}{0.85 \cdot \mathbf{f}_{\mathbf{c}} \cdot \mathbf{b}_{\mathbf{c}}} = 0.57 \cdot \mathbf{in}$	Depth of Whitney Stress Block (in.)

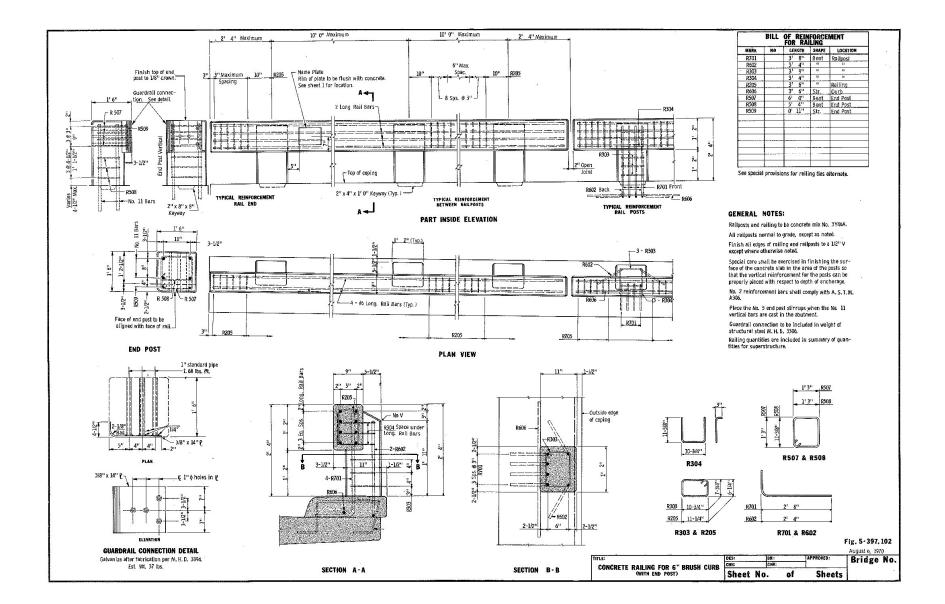





Texas A&M Transportation Institute	<u>SUBJECT</u> MnDOT F-Barrier Figure 5-397.114 MASH TL-3 Compliance Assessment	
(3) <u>LRFD Strength Analysis of the Barrier per AA</u>	SHTO Section 13 Specifications - Summary of Results:	
$H_{W} = 32 \cdot in$	Height of the Concrete Barrier measured from the top of the roadway surface (in.)	
R _{wmid} = 114.346 kip	Ultimate Resistance of the wall at midspan (kip)	
R _{wend} = 75.859 kip	Ultimate Resistance of the wall at the end of the wall or at a joint (kip)	
H _e = 19 in	Height of the Transverse Impact Force, $F_t(in.)$	
$R_{R.mid} = R_{wmid} \left(\frac{h_w}{H_e + t_o} \right) = 192.583 \text{ kip}$	Structural Capacity of the Barrier at midspan located at $\rm H_{e}$ (kip)	
$R_{R,end} := R_{wend} \left(\frac{H_w}{H_e + t_o} \right) = 127.763 \cdot kip$	Structural Capacity of the Barrier at the end of the wall or at a joint located at $H_e\left(kip\right)$	
$F_t = 71 \cdot kip$	Transverse Impact Force located at H _e (kip)	
Structural_Capacity_of_Barrier_at_Midspan_Check := "OK" if R _{R.mid} ≥ F _t "NOT OKAY" otherwise		
Structural_Capacity_of_Barrier_at_Midspan_Check = "OK"		
Structural_Capacity_of_Barrier_at_Ends_Check :=	"OK" if R _{R.end} ≥F _t "NOT OKAY" otherwise	
Structural_Capacity_of_Barrier_at_Ends_Check = "OK"		

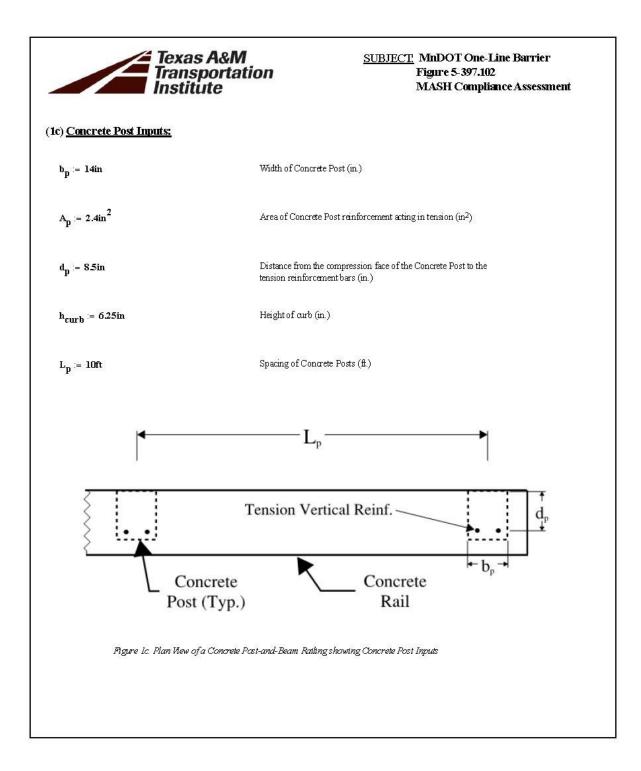


Texas A&M Transportation Institute	<u>SUBJECT</u> MnDOT F-Barrier Figure 5-397.114 MASH TL-3 Compliance Assessment
(4a-conti.) Bending Capacity of the End Post about	the Longitudinal Axis: M _{spost}
A _{p.spost} = n _{p.spost} A _{p1.spost} = 3.16 in ²	Total Area of parapet vertical reinforment in the tension zone of the end post (in^2)
$a_{p.spost} = \frac{A_{p.spost} f_y}{0.85 f_c b_{spost}} = 1.549$ in	Depth of the Whitney Stress Block (in.)
dp.spost = 9.75in Average extreme	distance of tension parapet vertical reinforcement in the end $post(in)$
$M_{p.spost} := A_{p.spost} \cdot f_{y} \cdot \left(d_{p.spost} - \frac{a_{p.spost}}{2} \right) = 141.5$	813 · kip · ft Flexural Capacity of the End Post about the Longitudinal Axis when considering only the parapet vertical reinforcment (kip-ft)
Bending Capacity of End Post Considering only the Dec Note: See <i>Figure 1</i> for a visual representation of the reinforcement	
A _{al.spost} := lin ² Area of one ancho #9 Bars	orage vertical reinforcement leg in the tension zone in the end post (in^2)
n _{a.spost} := 4 Number of ancho	rage vertical reinforcement in the end post (in.)
$A_{a.spost} = n_{a.spost} A_{a1.spost} = 4 in^2$	Total Area of deck anchorage vertical reinforment in the tension zone of the end post (in^2)
$a_{a.spost} := \frac{A_{a.spost} \cdot f_y}{0.85 \cdot f_c \cdot b_{spost}} = 1.961 \cdot in$	Depth of the Whitney Stress Block (in.)
d _{a.spost} := 11in Extreme distance	of tension deck anchorage vertical rainforcement in the end post (in.)
$M_{a.spost} := A_{a.spost} f_y \left(d_{a.spost} - \frac{a_{a.spost}}{2} \right) = 200.3$	392 · kip · ft Flexural Capacity of the End Post about the Longitudinal Axis when considering only the deck anchorage vertical reinforcment (kip-ft)
$M_{s,post} := \min(M_{p,spost}, M_{a,spost}) = 141.813 \text{ kip ft}$	Flexural Resistance of the End Post about the Longitudinal Axis when considering the critical reinforcment (k-fb/ft)



SUBJECT: MnDOTF-Barrier Figure 5-397.114 MASH TL-3 Compliance Assessment **APPENDIX C: ONE-LINE RAILING ANALYSES**

APPENDIX C1: ONE-LINE BRIDGE RAIL ON FIGURE 5-397.102



<u>SUBJECT</u> MnDOT One-Line Barrier Figure 5-397.102 MASH Compliance Assessment

(1) General Information and Inputs:

1) Reference: AASHTO MASH TL-3 Conditions. 2) Assess the adequacy of the barrier based on AASHTO LRFD Section 13 criteria.

(1a) <u>General Inputs:</u>		
f° _c := 4000 psi	Compressive Strength of Concrete (psi)	
$f_y := 40ksi$	Vield Strength of Concrete Reinforcing Steel, (ks	i)
E _s = 29000ksi	Modulus of Elasticity of Steel (ksi)	
H _w := 34.25in	Height of the concrete barrier measured from the surface/overlay to the top of the highest rail (m.)	top of the roadway
t ₀ := 0in	Thickness of overlay (in.)	
$h_{W} = H_{W} + t_{0} = 34.25$ in	Total height of the barrier (in.)	- dcr -
(1b) <u>Concrete Rail Inputs:</u>		
b _{cr} := 14in	Width of the Concrete Rail (in.)	
A _{cr} := 1.76in ²	Total area of the reinforcement bars acting in tension in the Concrete Rail (in ²)	bcr
d _{cr} := 7in	Distance from the compression face of the Concrete Rail to the tension reinforcement bars (in.)	Figure 1b. Profile New showing Concrete Rail Inputs
y _{cr} := 27.25in	Height of the Concrete Rail measured from the top of the roadway surface/overlay to the centroid of the rail (in.)	

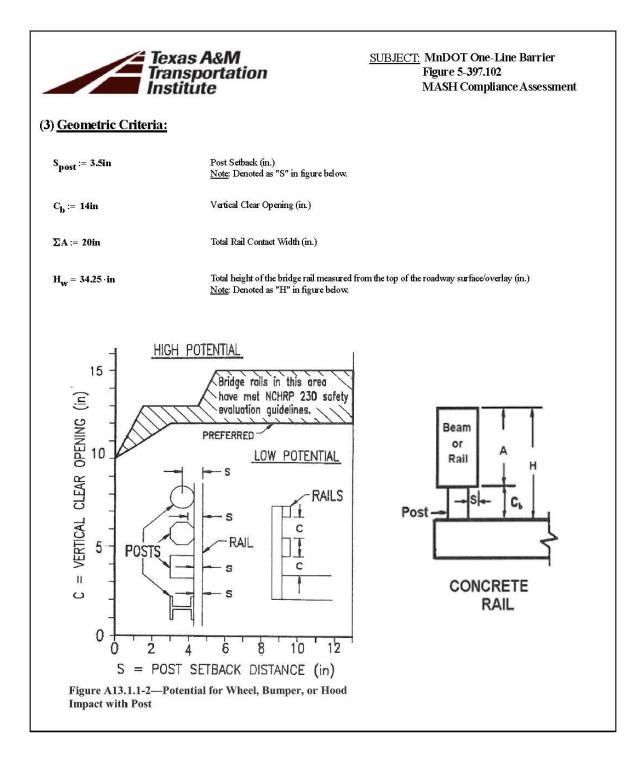
SUBJECT: MnDOT One-Line Barrier Figure 5-397.102 MASH Compliance Assessment

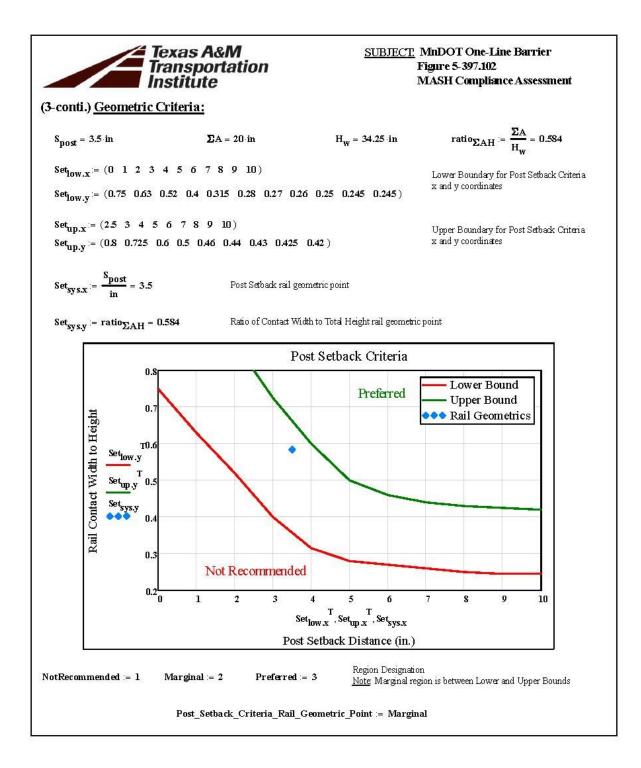
(1c) Design Force Inputs:

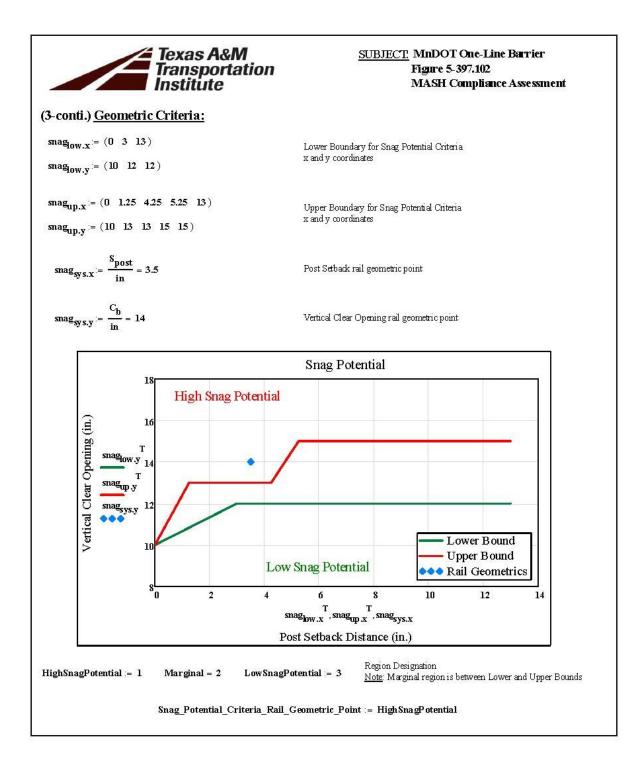
Design Forces for Traffic Railings

Test Level	Rail Height (in.)	Ft (kip)	FL (kip)	Fv (kip)	Lt/L1 (ft)	Lv (ft)	H₂ (in)	Hmin (in)
TL-1	18 or above	13.5	4.5	4.5	4.0	18.0	18.0	18.0
TL-2	18 or above	27.0	9.0	4.5	4.0	18.0	20.0	18.0
TL-3	29 or above	71.0	18.0	4.5	4.0	18.0	19.0	29.0
TL-4 (a)	36	68.0	22.0	38.0	4.0	18.0	25.0	36.0
TL-4 (b)	between 36 and 42	80.0	27.0	22.0	5.0	18.0	30.0	36.0
TL-5 (a)	42	160.0	41.0	80.0	10.0	40.0	35.0	42.0
TL-5 (b)	greater than 42	262.0	75.0	160.0	10.0	40.0	43.0	42.0
TL 6		175.0	58.0	80.0	8.0	40.0	56.0	90.0

References:


• TL-1 and TL-2 Design Forces are from AASHTO LRFD Section 13 Table A13.2-1

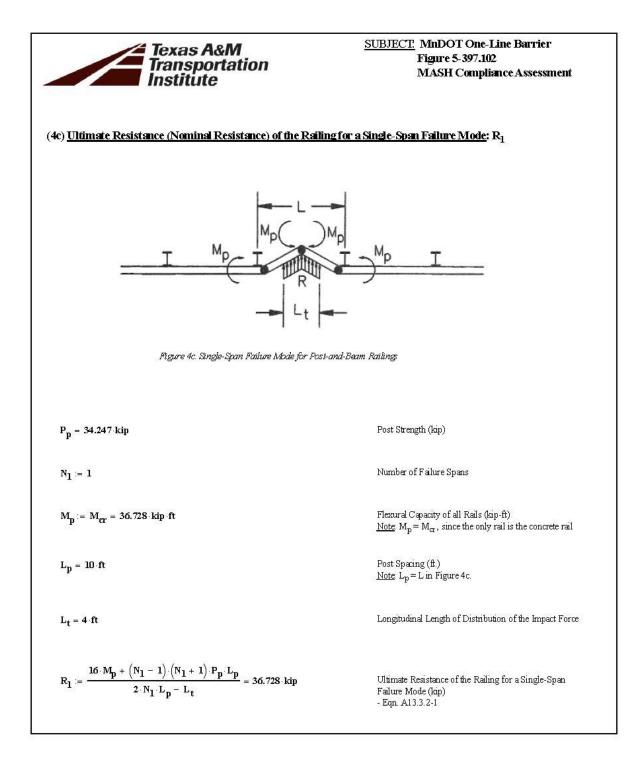

•	TL-3 Design Forces are from research conducted under NCHRP Project 20-07 Task 395
а.	TL 4 (a) TL 4 (b) TL 5 (a) and TL 5 (b) Design Forces are from research conducted und

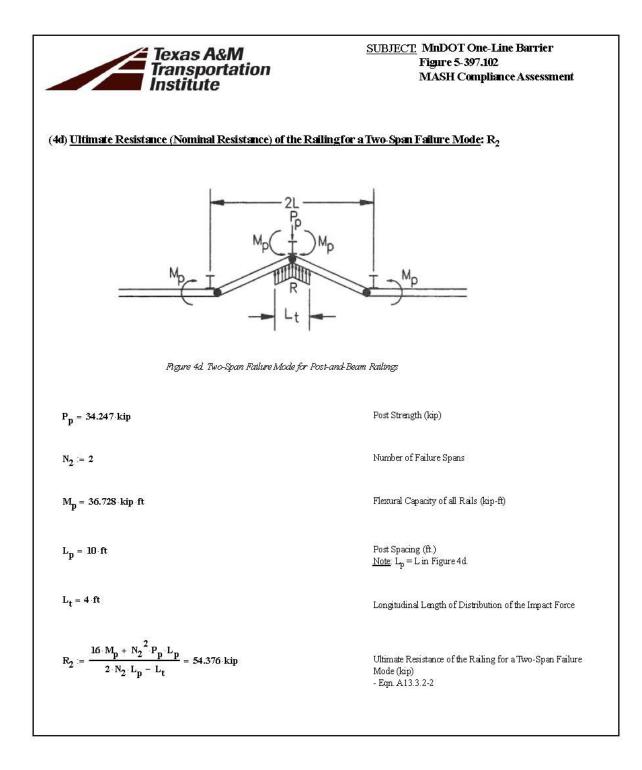

TL-4 (a), TL-4 (b), TL-5 (a), and TL-5 (b) Design Forces are from research conducted under NCHRP Project 22-20(2)

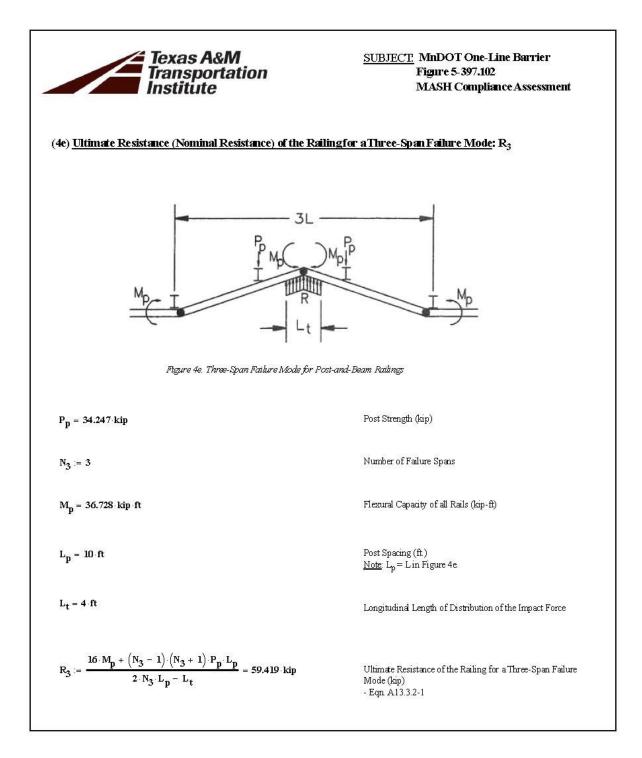
TL := 3	Test Level
F _t := 71kip	Transverse Impact Force
$L_t := 4ft$	Longitudinal Length of Distribution of Impact Force
H _e := 19in	Height of Equivalent Transverse Load
H _{min} := 29in	Minimum height of a MASH TL-3 barrier (in.)
H _w = 34.25 in	Height of the concrete barrier measured from the top of the roadway surface/overlay to the top of the highest rail (in.)

Tex Trai Inst	as A&M nsportation titute	<u>SUBJECT</u> : MnDOT One-Line Barrier Figure 5-397.102 MASH Compliance Assessment
(2) <u>Stability Criteria:</u>		
H _{min} = 29∙in	Minimum height of a MASH TL-3 ba	rrier (m.)
H _W = 34.25 in	Height of the concrete barrier measure of the highest rail (in.)	d from the top of the roadway surface/overlay to the top
Minimum_Height_of_Barr	ier_Check := "OK" if $H_W \ge H_T$ "NOT OKAY" oth	nin erwise
	Minimum_Height_of_Barrier_Cl	neck = "OK"

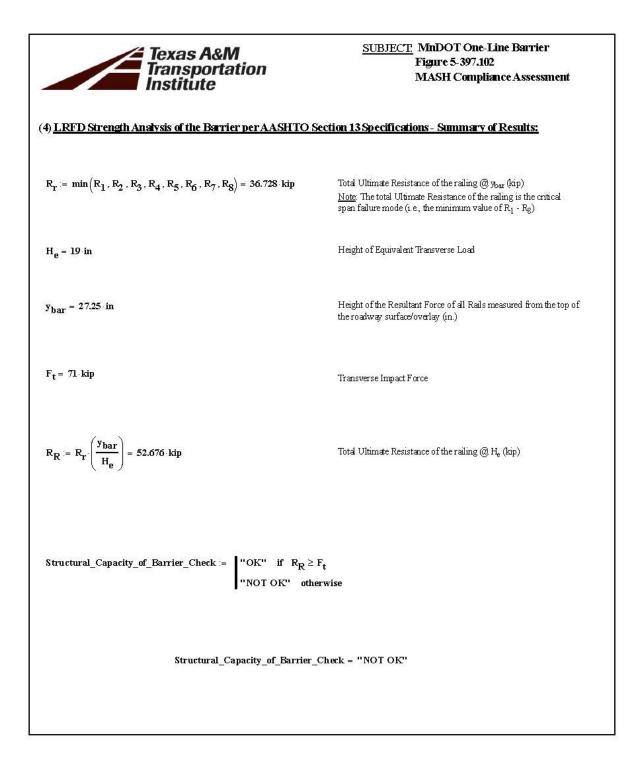
n
n

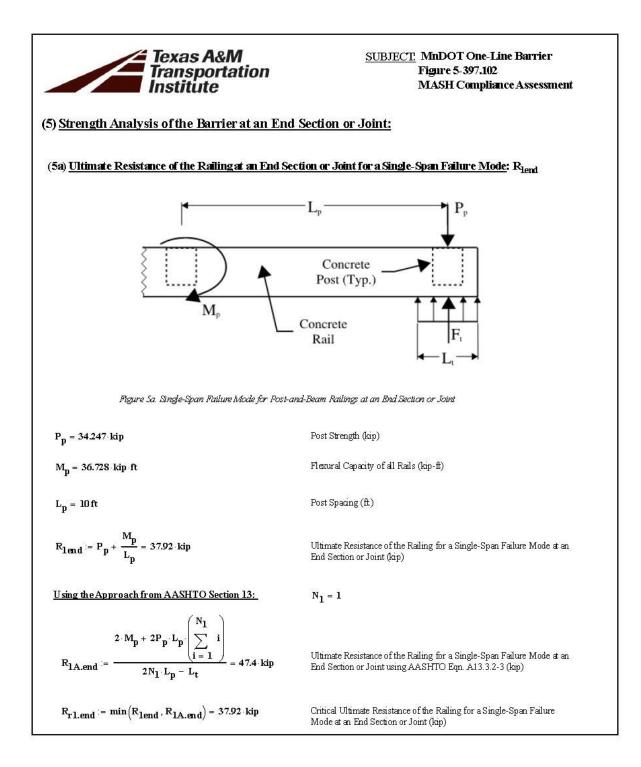

 SUBJECT:
 MnDOT One-Line Barrier

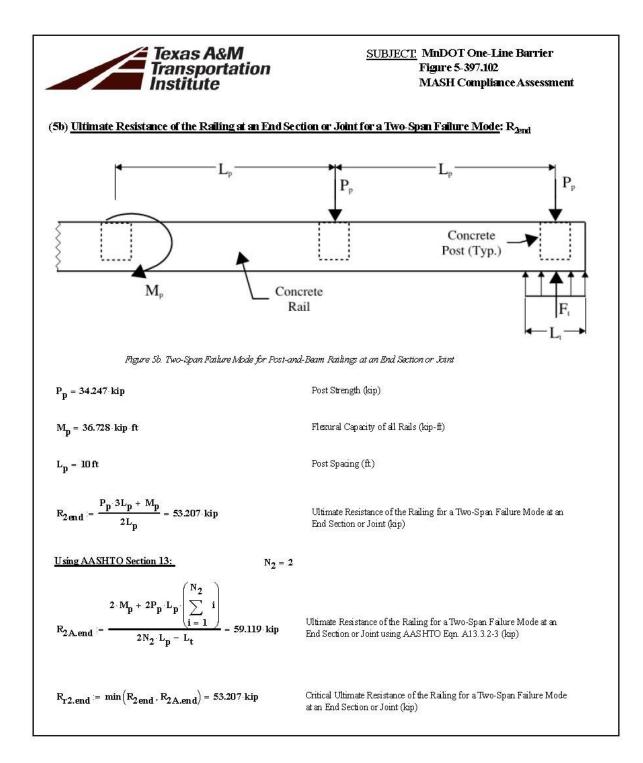

 Figure 5-397.102
 MASH Compliance Assessment

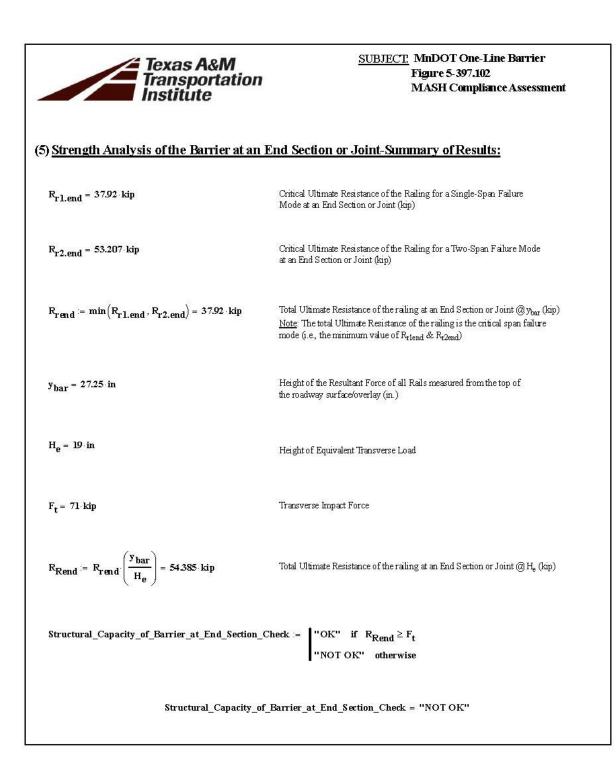

(3) <u>Geometric Criteria - Summary of Results:</u>
Post_Setback_Criteria_Check := "OK" if Post_Setback_Criteria_Rail_Geometric_Point = Preferred "NOT OK" otherwise
Post_Setback_Criteria_Check = "NOT OK"
Snag_Potential_Criteria_Check := "OK" if Snag_Potential_Criteria_Rail_Geometric_Point = LowSnagPotential "NOT OK" otherwise
Snag_Potential_Criteria_Check = "NOT OK"

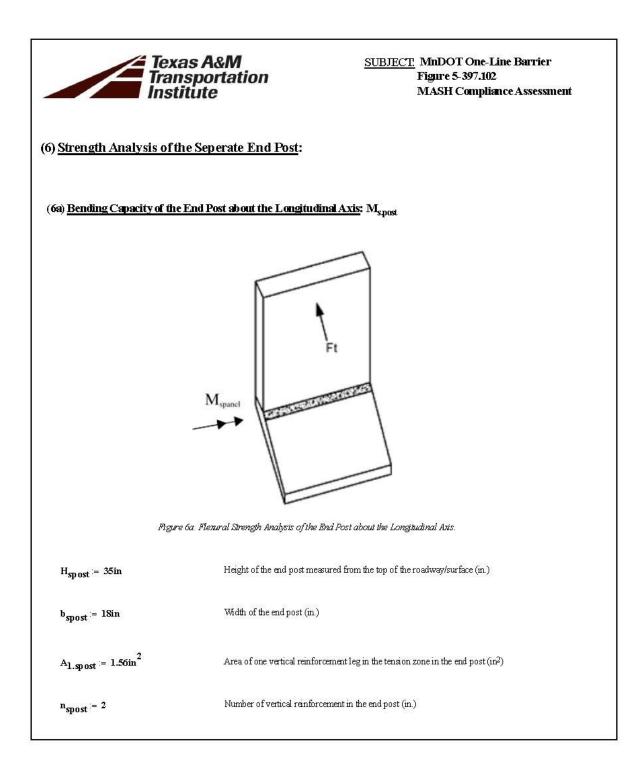
Texas A&M Transportation Institute	<u>SUBJECT</u> . MnDOT One-Line Barrier Figure 5-397.102 MASH Compliance Assessment
(4) <u>LRFD Strength Analysis of the Barrier pe</u>	r AASHTO Section 13 Specifications:
(4a) <u>Flexural Capacity of the Concrete Rail:</u> M _{cr}	
$f_y = 40 \cdot ksi$	Yield Strength of Concrete Rainforcing Steel, (ksi)
$\Gamma_c = 4 \cdot k s i$	Concrete Compressive Strength
b _{cr} = 14 in	Width of the Concrete Rail (in.)
$A_{cr} = 1.76 \cdot in^2$	Total area of the reinforcement bars acting in tension in the Concrete Rail (in ²)
$\mathbf{d}_{\mathbf{cr}} = 7 \cdot \mathbf{in}$	Distance from the compression face of the Concrete Rail to the tension reinforcement bars (in.)
$a_{cr} := \frac{A_{cr} \cdot f_y}{0.85 f_c \cdot b_{cr}} = 1.479 \cdot in$	Whitney Stress Block Depth (in.)
$\mathbf{M}_{\mathbf{cr}} := \mathbf{A}_{\mathbf{cr}} \cdot \mathbf{f}_{\mathbf{y}} \cdot \left(\mathbf{d}_{\mathbf{cr}} - \frac{\mathbf{a}_{\mathbf{cr}}}{2} \right) = 36.728 \cdot \mathbf{kip} \cdot \mathbf{ft}$	Flexural Capacity of the Concrete Rail (kip-ft)
$y_{cr} = 27.25 \cdot in$	Height of the Concrete Rail measured from the top of the roadway surface'overlay to the centroid of the rail (in)
$y_{bar} := y_{cr} = 27.25 \cdot in$	Height of the Resultant Force of all Rails measured from the top of the roadway surface/overlay (in.) <u>Note</u> : y _{bar} = y _{cr} , since the only rail is the concrete rail

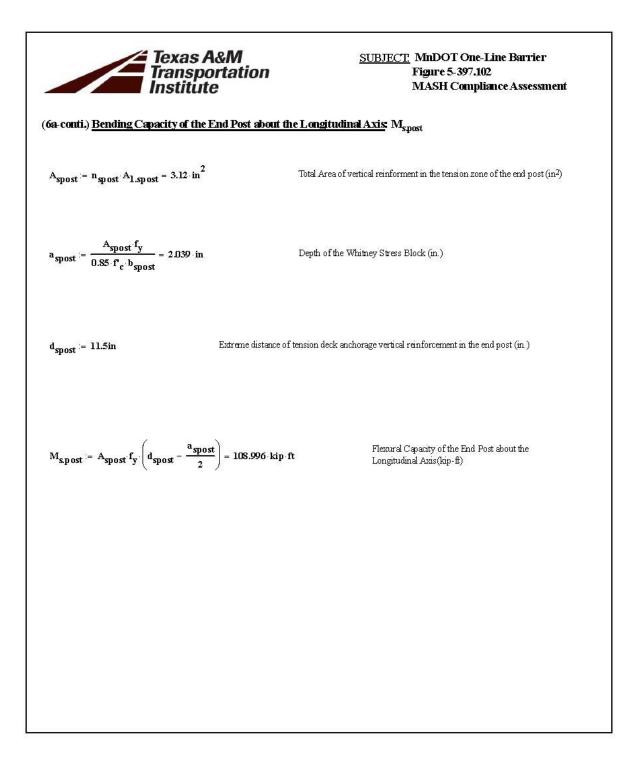

Texas A&M Transportation Institute	<u>SUBJECT</u> MnDOT One-Line Barrier Fignre 5-397.102 MASH Compliance Assessment
(4b) <u>Post Strength:</u> P _p	
$f_y = 40 \cdot ksi$	Yield Strength of Concrete Reinforcing Steel (ksi)
$f_c = 4 \cdot ksi$	Concrete Compressive Strength
$\mathbf{b_p} = 14 \cdot \mathbf{in}$	Width of Concrete Post (in.)
$A_p = 2.4 \cdot in^2$	Area of Concrete Post reinforcement acting in tension (in^2)
d _p = 8.5 in	Distance from the compression face of the Concrete Post to the tension reinforcement bars (in.)
$\mathbf{a_p} := \frac{\mathbf{A_p} \cdot \mathbf{f_y}}{0.85 \cdot \mathbf{f_c} \cdot \mathbf{b_p}} = 2.017 \cdot \mathbf{in}$	Whitney Stress Block Depth (in.)
$M_{post} := A_p \cdot f_y \cdot \left(d_p - \frac{a_p}{2}\right) = 59.933 \cdot kip \cdot ft$	Flexural Capacity of the Concrete Post (kip-ft)
$y_{har} = 27.25 \cdot in$	Height of the Resultant Force of all Rails measured from the top of the roadway surface/overlay (in.)
h _{curb} = 6.25 in	Height of curb (in.)
$\mathbf{y}_{\mathbf{p}} := \mathbf{y}_{\mathbf{bar}} - \mathbf{h}_{\mathbf{curb}} = 21 \cdot \mathbf{in}$	Height measured from the bottom of the Concrete Post to the Resultant Force of all Rails (in.)
$P_{\mathbf{p}} := \frac{M_{\mathbf{p} \text{ ost}}}{y_{\mathbf{p}}} = 34.247 \cdot kip$	Post Strength (kip)

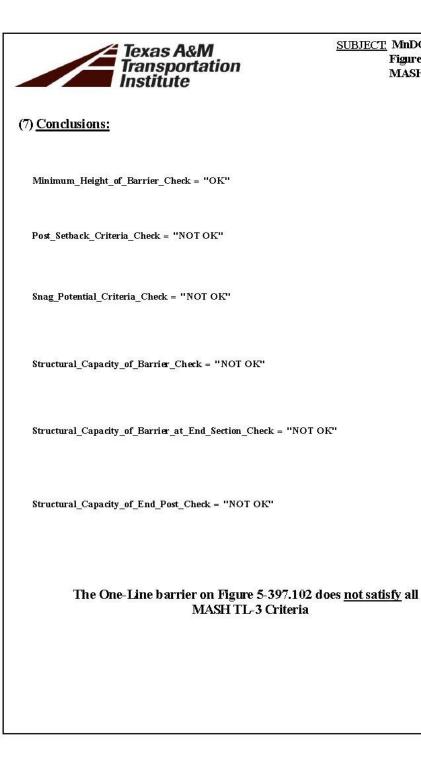


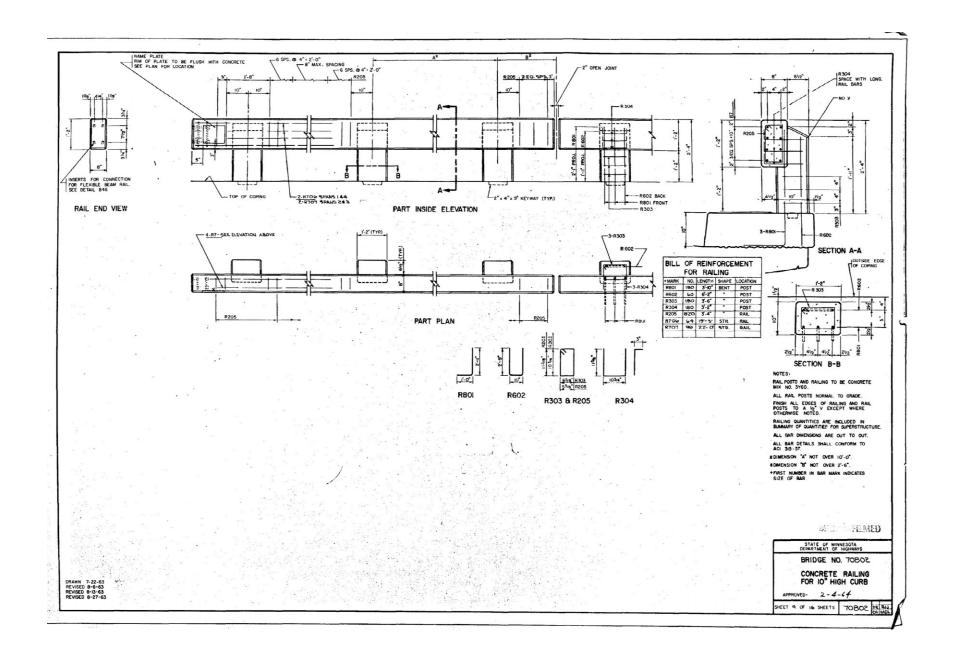





Texas A&M Transportation Institute	<u>SUBJECT</u> MnDOT One-Line Barrier Figure 5-397.102 MASH Compliance Assessment								
(4f) <u>Ultimate Resistance (Nominal Resistance) of the Railing for a 4-8 Span Failure Mode</u> : $ m R_4$ - $ m R_8$									
$P_p = 34.247 \text{ kip}$ $L_p = 10 \text{ ft}$	$M_p = 36.728 \text{ kip ft}$ $L_t = 4 \text{ ft}$								
N ₄ := 4 N ₅ := 5 N ₆ := 6	N ₇ := 7 N ₈ := 8								
$R_{4} := \frac{16 \cdot M_{p} + N_{4}^{2} \cdot P_{p} \cdot L_{p}}{2 \cdot N_{4} \cdot L_{p} - L_{t}} = 79.832 \cdot kip$	Ultimate Resistance of the Railing for a Four-Span Failure Mode (kip) - Eqn. A.13.3.2-2								
$\mathbf{R}_{5} \coloneqq \frac{16 \cdot \mathbf{M}_{p} + \left(\mathbf{N}_{5} - 1\right) \cdot \left(\mathbf{N}_{5} + 1\right) \cdot \mathbf{P}_{p} \cdot \mathbf{L}_{p}}{2 \cdot \mathbf{N}_{5} \cdot \mathbf{L}_{p} - \mathbf{L}_{t}} = 91.74 \cdot \mathbf{kip}$	Ultimate Resistance of the Railing for a Five-Span Failure Mode (kip) - Eqn. A.13.3.2-1								
$R_{6} := \frac{16 \cdot M_{p} + N_{6}^{2} \cdot P_{p} \cdot L_{p}}{2 \cdot N_{6} \cdot L_{p} - L_{t}} = 111351 \cdot kip$	Ultimate Resistance of the Railing for a Six-Span Failure Mode (kip) - Eqn. A13.3.2-2								
$\mathbf{R}_{7} \coloneqq \frac{16 \cdot \mathbf{M}_{p} + (\mathbf{N}_{7} - 1) \cdot (\mathbf{N}_{7} + 1) \cdot \mathbf{P}_{p} \cdot \mathbf{L}_{p}}{2 \cdot \mathbf{N}_{7} \cdot \mathbf{L}_{p} - \mathbf{L}_{t}} = \mathbf{125.194 \cdot kip}$	Ultimate Resistance of the Railing for a Seven-Span Failure Mode (kip) - Eqn. A13.3.2-1								
$R_{S} := \frac{16 \cdot M_{p} + N_{g}^{2} \cdot P_{p} \cdot L_{p}}{2 \cdot N_{g} \cdot L_{p} - L_{t}} = 144.269 \cdot kip$	Ultimate Resistance of the Railing for a Eight-Span Failure Mode (kip) - Eqn. A13.3.2-2								







<u>SUBJECT</u> MnDOT One-Line Barrier Figure 5-397.102 MASH Compliance Assessment APPENDIX C2: ONE-LINE BRIDGE RAIL ON BRIDGE NO. 70802

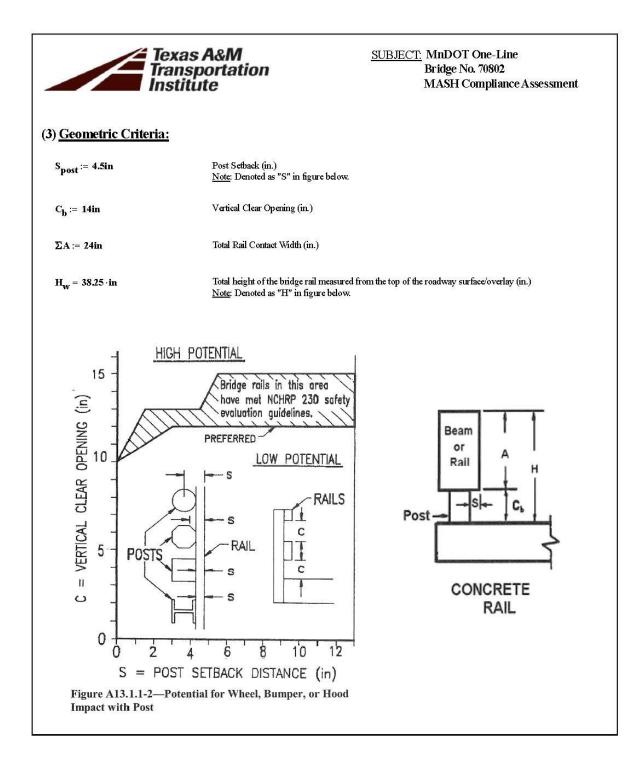
Tex Trai Inst	as A&M nsportation titute	<u>SUBJEC</u>	<u>T</u> MnDOT One-Line Bridge No. 70802 MASH Compliance Assessment
) General Information	and Inputs:		
Reference: AASHTO MASH (Assess the adequacy of the ban		LRFD Section 13 criteria.	
1a) <u>General Inputs:</u>			
f' _c = 4000 psi		Compressive Strength of Concrete	(psi)
fy := 40ksi		Yield Strength of Concrete Reinford	ring Steel, (ksi)
E _s = 29000k <i>s</i> i		Modulus of Elasticity of Steel (ksi)	
H _w = 38.25in		Height of the concrete barrier meas surface/overlay to the top of the hig	
t _o := 0in		Thickness of overlay (in.)	
$h_{W} = H_{W} + t_{0} = 38.25$ in		Total height of the barrier (in.)	→ d _{cr} →
(1b) <u>Concrete Rail Inputs:</u>			
b _{cr} := 14in	Width of the Co	oncrete Rail (in.)	b _{cr} • •
$A_{cr} = 2.4in^2$		reinforcement bars acting Concrete Rail (in ²)	
d _{cr} := δin		he compression face of the Concrete on reinforcement bars (in.)	Figure 1b. Profile View showing Concrete Rail Inputs
y _{cr} := 31in		oncrete Rail measured from the top o to the centroid of the rail (in.)	f the roadway

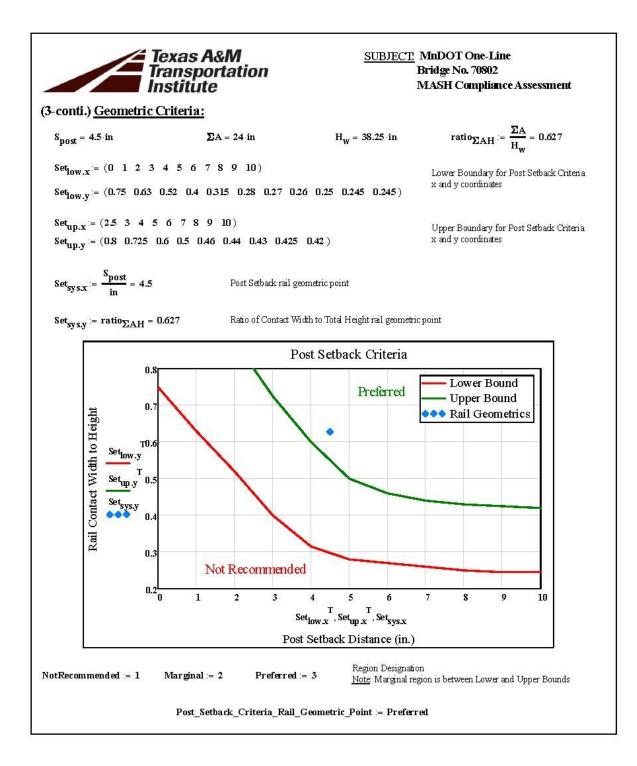
SUBJECT: MnDOT One-Line On Bridge No. 70802 MASH TL-3 Compliance Assessment

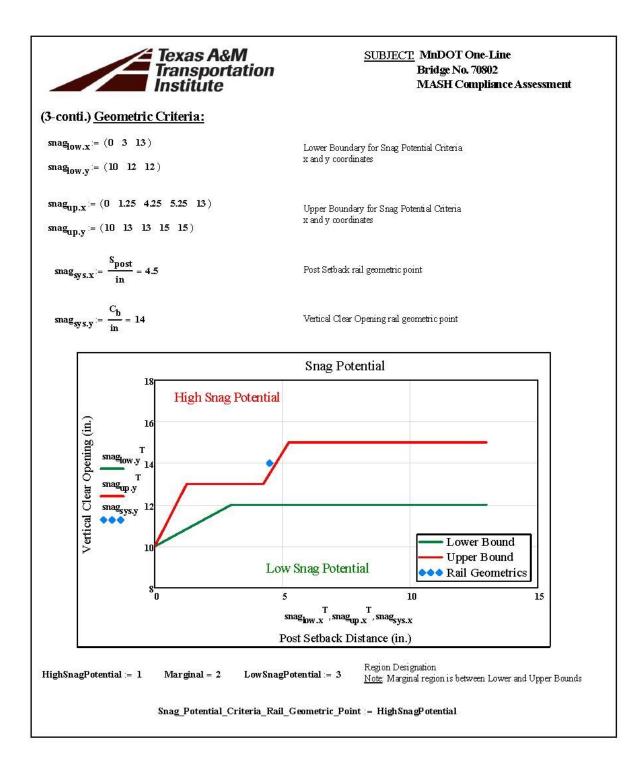
(1c) Design Force Inputs:

Design Forces for Traffic Railings

Test Level	Rail Height (in.)	Ft (kip)	FL (kip)	Fv (kip)	Lt/L1 (ft)	Lv (ft)	H₂ (in)	Hmin (in)
TL-1	18 or above	13.5	4.5	4.5	4.0	18.0	18.0	18.0
TL-2	18 or above	27.0	9.0	4.5	4.0	18.0	20.0	18.0
TL-3	29 or above	71.0	18.0	4.5	4.0	18.0	19.0	29.0
TL-4 (a)	36	68.0	22.0	38.0	4.0	18.0	25.0	36.0
TL-4 (b)	between 36 and 42	80.0	27.0	22.0	5.0	18.0	30.0	36.0
TL-5 (a)	42	160.0	41.0	80.0	10.0	40.0	35.0	42.0
TL-5 (b)	greater than 42	262.0	75.0	160.0	10.0	40.0	43.0	42.0
TL6	-	175.0	58.0	80.0	8.0	40.0	56.0	90.0


References:


• TL-1 and TL-2 Design Forces are from AASHTO LRFD Section 13 Table A13.2-1


TL-3 Design Forces are from research conducted under NCHRP Project 20-07 Task 395
TL-4 (a), TL-4 (b), TL-5 (a), and TL-5 (b) Design Forces are from research conducted under NCHRP Project 22-20(2)

TL := 3	Test Level
F _t = 71kip	Transverse Impact Force
$L_t = 4ft$	Longitudinal Length of Distribution of Impact Force
H _e := 19in	Height of Equivalent Transverse Load
H _{min} := 29in	Minimum height of a MASH TL-3 barrier (in.)
H _W = 38.25 ∙ in	Height of the concrete barrier measured from the top of the roadway surface/overlay to the top of the highest rail (in.)

Texas A&A Transporta Institute	A <u>SUBJEC</u>	<u>F.</u> MnDOT One-Line Bridge No. 70802 MASH TL-3 Compliance Assessment	
(2) <u>Stability Criteria:</u>			
H _{min} = 29 in Minimum I	neight of a MASH TL-3 barrier (in.)		
H _W = 38.25 in Haght of the high of the h	he concrete barrier measured from the top est rail (in.)	p of the roadway surface/oved ay to the top	
Minimum_Height_of_Barrier_Check := "OK" if H _w ≥ H _{min} "NOT OKAY" otherwise			
Minimum_Height_of_Barrier_Check = "OK"			

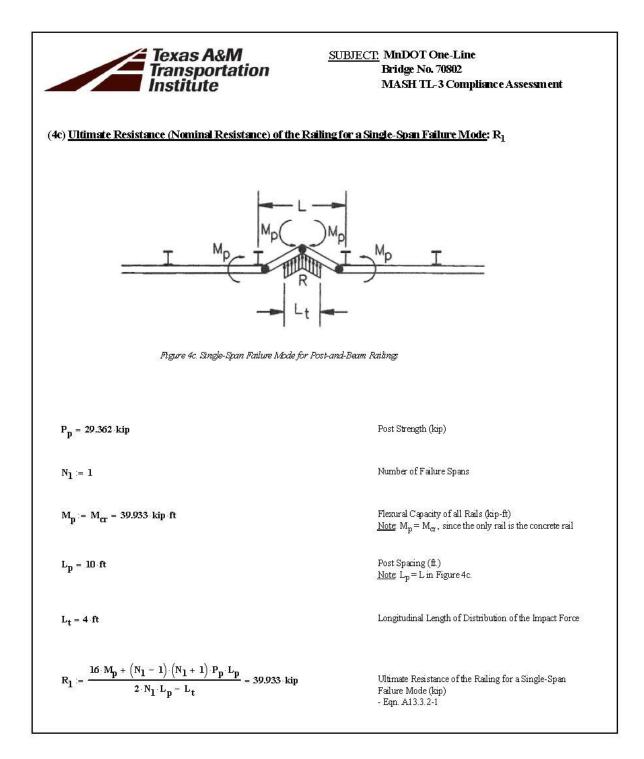
Texas A&M Transportation Institute
msinute

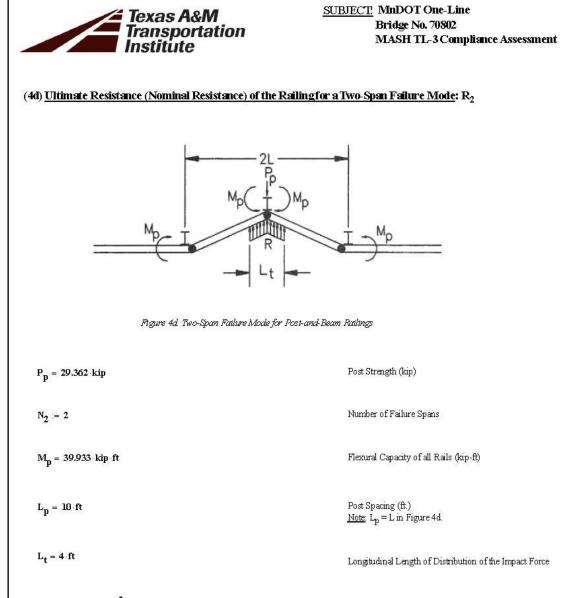
 SUBJECT.
 MnDOT One-Line

 Bridge No. 70802
 MASH Compliance Assessment

(3) <u>Geometric Criteria - Summary of Results:</u>

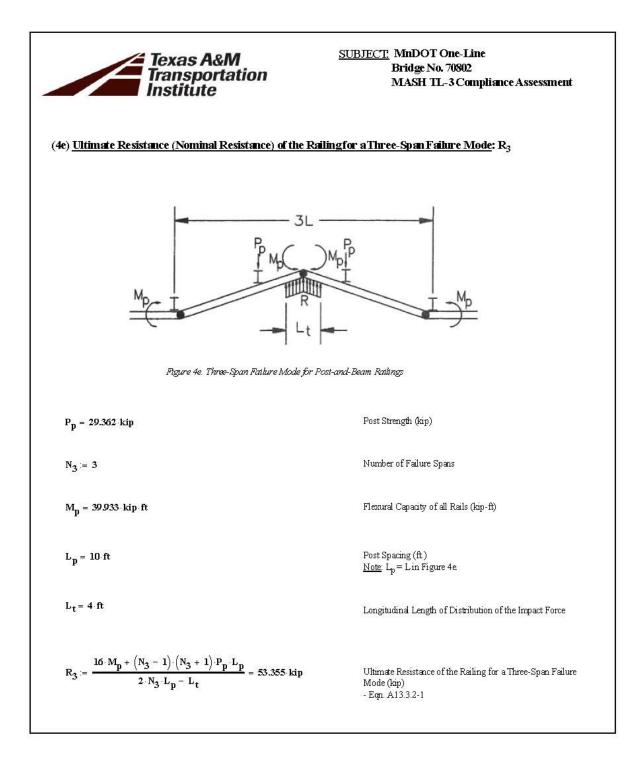
Post_Setback_Criteria_Check = "OK" if Post_Setback_Criteria_Rail_Geometric_Point = Preferred "NOT OK" otherwise

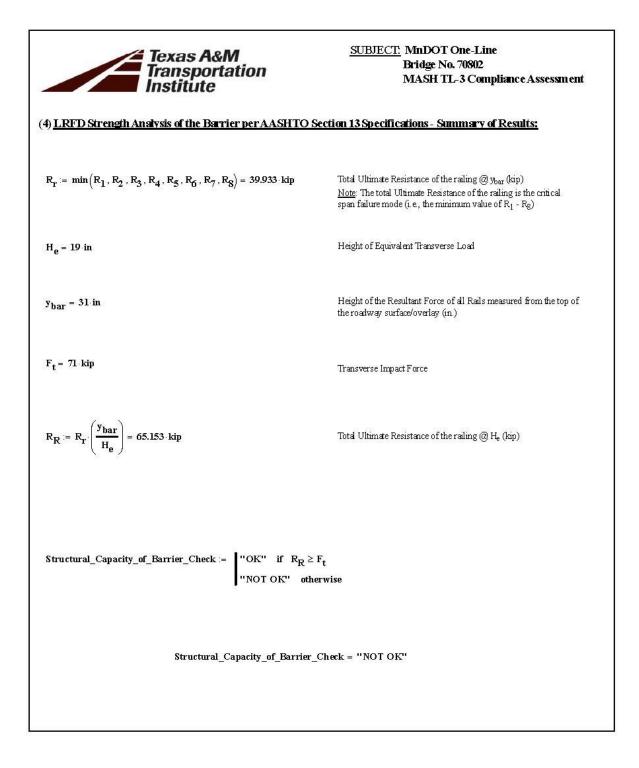

Post_Setback_Criteria_Check = "OK"

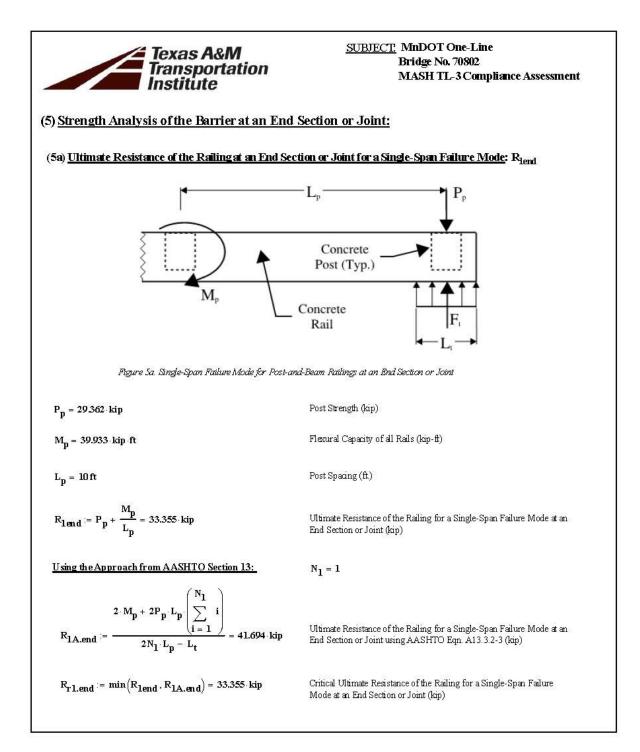

	"OK" if Snag_Potential_Criteria_Rail_Geometric_Point = LowSnagPotential
and the second sec	"NOT OK" otherwise

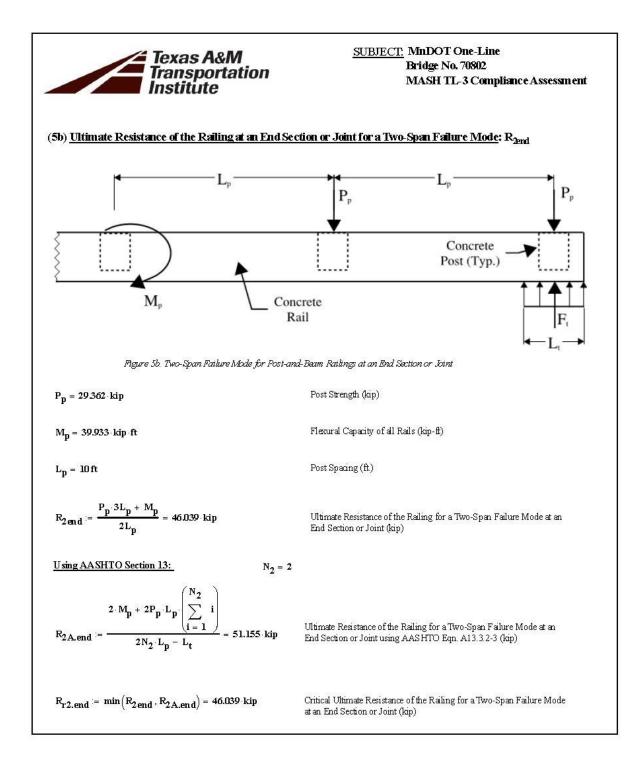
Snag_Potential_Criteria_Check = "NOT OK"

Texas A&M Transportation Institute	<u>SUBJECT</u> MnDOT One-Line Bridge No. 70802 MASH TL-3 Compliance Assessment			
(4) LRFD Strength Analysis of the Barrier per AASHTO Section 13 Specifications:				
(4a) <u>Flexural Capacity of the Concrete Rail:</u> M _{cr}				
$f_y = 40 \cdot ksi$	Yield Strength of Concrete Reinforcing Steel, (ksi)			
$\mathbf{f}_{c} = 4 \cdot \mathbf{k} \mathbf{s}$	Concrete Compressive Strength			
b _{cr} = 14 in	Width of the Concrete Rail (in.)			
$A_{cr} = 2.4 \cdot in^2$	Total area of the reinforcement bars acting in tension in the Concrete Rail (in ²)			
d _{cr} = 6∙in	Distance from the compression face of the Concrete Rail to the tension reinforcement bars (in.)			
$\mathbf{a_{cr}} \coloneqq \frac{\mathbf{A_{cr}} \cdot \mathbf{f_y}}{0.85 \mathbf{f_c} \cdot \mathbf{b_{cr}}} = 2.017 \cdot \mathbf{in}$	Whitney Stress Block Depth (in.)			
$M_{cr} := A_{cr} \cdot f_{y} \cdot \left(d_{cr} - \frac{a_{cr}}{2} \right) = 39.933 \text{ kip ft}$	Flexural Capacity of the Concrete Rail (kip-ft)			
y _{cr} = 31 in	Height of the Concrete Rail measured from the top of the roadway surface/overlay to the centroid of the rail (in.)			
$y_{bar} := y_{cr} = 31 \cdot in$	Height of the Resultant Force of all Rails measured from the top of the roadway surface/overlay (in.) Note: $y_{bar} = y_{cr}$, since the only rail is the concrete rail			


Texas A&M Transportation Institute	<u>SUBJECT</u> : MnDOT One-Line Bridge No. 70802 MASH TL-3 Compliance Assessment
(4b) <u>Post Strength:</u> P _p	
$f_y = 40 \cdot ksi$	Yield Strength of Concrete Reinforcing Steel (ksi)
$\mathbf{f}_{c} = 4 \cdot \mathbf{k} \mathbf{s}$	Concrete Compressive Strength
$b_p = 14 \cdot in$	Width of Concrete Post (in.)
$A_p = 2.37 \cdot m^2$	Area of Concrete Post reinforcement acting in tension (in ²)
$d_p = 7.5 \cdot in$	Distance from the compression face of the Concrete Post to the tension reinforcement bars (in.)
$a_{\mathbf{p}} = \frac{A_{\mathbf{p}} \cdot \mathbf{f}_{\mathbf{y}}}{0.85 \cdot \mathbf{f}_{\mathbf{c}} \cdot \mathbf{b}_{\mathbf{p}}} = 1.992 \text{ in}$	Whitney Stress Block Depth (in.)
$M_{post} := A_p \cdot f_y \cdot \left(d_p - \frac{a_p}{2}\right) = 51.383 \cdot kip \cdot ft$	Flexural Capacity of the Concrete Post (kip-ft)
y _{bar} = 31·in	Height of the Resultant Force of all Rails measured from the top of the roadway surface/overlay (in.)
h _{curb} = 10∙in	Height of curb (in.)
$\mathbf{y}_{\mathbf{p}} := \mathbf{y}_{\mathbf{bar}} - \mathbf{h}_{\mathbf{curb}} = 21 \cdot \mathbf{m}$	Height measured from the bottom of the Concrete Post to the Resultant Force of all Rails (in)
$P_p := \frac{M_p \text{ ost}}{y_p} = 29.362 \cdot \text{kip}$	Post Strength (kip)




R₂ :=


 $\frac{16 \cdot M_{p} + N_{2}^{-2} \cdot P_{p} \cdot L_{p}}{2 \cdot N_{2} \cdot L_{p} - L_{t}} = 50.372 \cdot kip$ Ultimate Resistance of the Railing for a Two-Span Failure Mode (kip) - Eqn. A13.3.2-2

Texas A&M Transportation Institute	<u>SUBJECT</u> : MnDOT One-Line Bridge No. 70802 MASH TL-3 Compliance Assessment				
(4f) <u>Ultimate Resistance (Nominal Resistance) of the R</u>	ailing for a 4-8 Span Failure Mode: R ₄ - R ₈				
$P_{p} = 29.362 \text{ kip}$ $L_{p} = 10 \text{ ft}$	$M_p = 39.933$ kip ft $L_t = 4$ ft				
N ₄ := 4 N ₅ := 5 N ₆ := 6	$N_7 := 7$ $N_8 := 8$				
$R_{4} := \frac{16 \cdot M_{p} + N_{4}^{2} \cdot P_{p} \cdot L_{p}}{2 \cdot N_{4} \cdot L_{p} - L_{t}} = 70.221 \text{ kip}$	Ultimate Resistance of the Railing for a Four-Span Failure Mode (kip) - Eqn. A13.3.2-2				
$\mathbf{R}_{5} \coloneqq \frac{16 \cdot \mathbf{M}_{p} + (\mathbf{N}_{5} - 1) \cdot (\mathbf{N}_{5} + 1) \cdot \mathbf{P}_{p} \cdot \mathbf{L}_{p}}{2 \cdot \mathbf{N}_{5} \cdot \mathbf{L}_{p} - \mathbf{L}_{t}} = 80.06 \cdot \mathbf{kip}$	Ultimate Resistance of the Railing for a Five-Span Failure Mode (kip) - Eqn. A13.3.2-1				
$R_{6} := \frac{16 \cdot M_{p} + N_{6}^{2} \cdot P_{p} \cdot L_{p}}{2 \cdot N_{6} \cdot L_{p} - L_{t}} = 96.631 \cdot kip$	Ultimate Resistance of the Railing for a Six-Span Failure Mode (kip) - Eqn. A13.3.2-2				
$\mathbf{R}_{7} \coloneqq \frac{16 \cdot \mathbf{M}_{p} + (\mathbf{N}_{7} - 1) \cdot (\mathbf{N}_{7} + 1) \cdot \mathbf{P}_{p} \cdot \mathbf{L}_{p}}{2 \cdot \mathbf{N}_{7} \cdot \mathbf{L}_{p} - \mathbf{L}_{t}} = \mathbf{108.328 \ kip}$) Ultimate Resistance of the Railing for a Seven-Span Failure Mode (kip) - Eqn. A13.3.2-1				
$R_{S} = \frac{16 \cdot M_{p} + N_{g}^{2} \cdot P_{p} \cdot L_{p}}{2 \cdot N_{S} \cdot L_{p} - L_{t}} = 124.554 \text{ kip}$	Ultimate Resistance of the Railing for a Eight-Span Failure Mode (kip) - Eqn. A13.3.2-2				

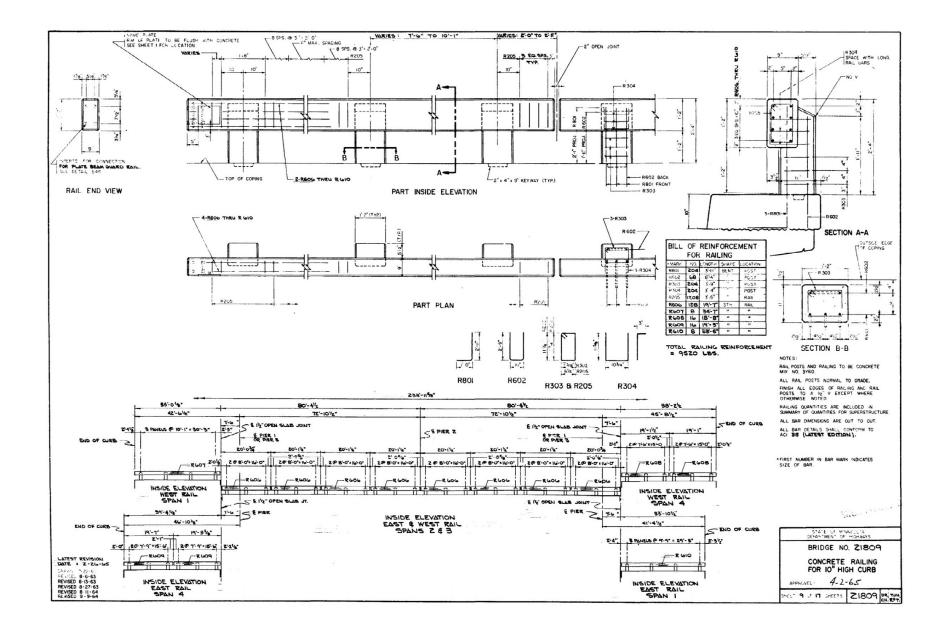
Texas A&M Transportation Institute	<u>SUBJECT</u> . MnDOT One-Line Bridge No. 70802 MASH TL-3 Compliance Assessment
(5) <u>Strength Analysis of the Barrier at an</u>	End Section or Joint-Summary of Results:
R _{rl.end} = 33.355 kip	Critical Ultimate Resistance of the Railing for a Single-Span Failure Mode at an End Section or Joint (kip)
R _{r2.end} = 46.039 kip	Critical Ultimate Resistance of the Railing for a Two-Span Failure Mode at an End Section or Joint (kip)
R _{rend} := min(R _{r1.end} , R _{r2.end}) = 33.355 kip	Total Ultimate Resistance of the railing at an End Section or Joint $@y_{bar}$ (kip) <u>Note</u> The total Ultimate Resistance of the railing is the critical span failure mode (i.e., the minimum value of $R_{rlend} & R_{r2end}$)
y _{bar} = 31 in	Height of the Resultant Force of all Rails measured from the top of the roadway surface/overlay (in.)
H _e = 19·in	Height of Equivalent Transverse Load
$\mathbf{F}_{\mathbf{t}} = 71 \cdot \mathbf{kip}$	Transverse Impact Force
$R_{Rend} := R_{rend} \left(\frac{y_{bar}}{H_e} \right) = 54.421 \text{ kip}$	Total Ultimate Resistance of the railing at an End Section or Joint $(\mathcal{O} H_{\rm e} ({\rm kip})$
Structural_Capacity_of_Barrier_at_End_Section_C	heck := "OK" if R _{Rend} ≥ F _t "NOT OK" otherwise
Structural_Capacity_of_	Barrier_at_End_Section_Check = "NOT OK"

<u>SUBJECT.</u> MnDOT One-Line Bridge No. 70802 MASH TL-3 Compliance Assessment

(7) Conclusions:

Minimum_Height_of_Barrier_Check = "OK"

Post_Setback_Criteria_Check = "OK"

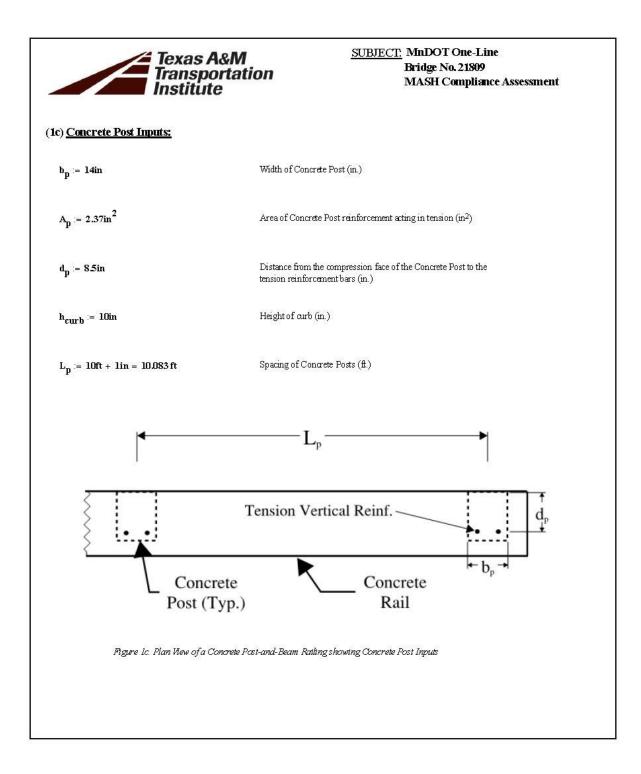

Snag_Potential_Criteria_Check = "NOT OK"

Structural_Capacity_of_Barrier_Check = "NOT OK"

Structural_Capacity_of_Barrier_at_End_Section_Check = "NOT OK"

The One Line barrier on Bridge No. 70802 does <u>not satisfy</u> all MASH TL-3 Criteria

APPENDIX C3: ONE-LINE BRIDGE RAIL ON BRIDGE NO. 21809



SUBJECT: MnDOT One-Line Bridge No. 21809 MASH Compliance Assessment

(1) General Information and Inputs:

1) Reference: AASHTO MASH Conditions. 2) Assess the adequacy of the barrier based on AASHTO LRFD Section 13 criteria.

(1a) <u>General Inputs:</u>	
f' _c := 4000 psi	Compressive Strength of Concrete (psi)
$f_y := 40ksi$	Yield Strength of Concrete Reinforcing Steel, (ksi)
E _s := 29000k <i>s</i> i	Modulus of Elasticity of Steel (ksi)
H _W := 38.25in	Height of the concrete barrier measured from the top of the roadway surface/overlay to the top of the highest rail (in.)
$t_0 := 0in$	Thickness of overlay (in.)
$h_{W} = H_{W} + t_{0} = 38.25$ in	Total height of the barrier (in.)
(1b) <u>Concrete Rail Inputs:</u>	
b _{cr} := 14in	Width of the Concrete Rail (in.)
A _{cr} := 1.76in ²	Total area of the reinforcement bars acting in tension in the Concrete Rail (in ²)
d _{cr} := 7in	Distance from the compression face of the Concrete Rail to the tension reinforcement bars (in.) Regure 1b. Profile New showing Concrete Rail Inputs
y _{cr} := 31in	Height of the Concrete Rail measured from the top of the roadway surface'overlay to the centroid of the rail (in.)

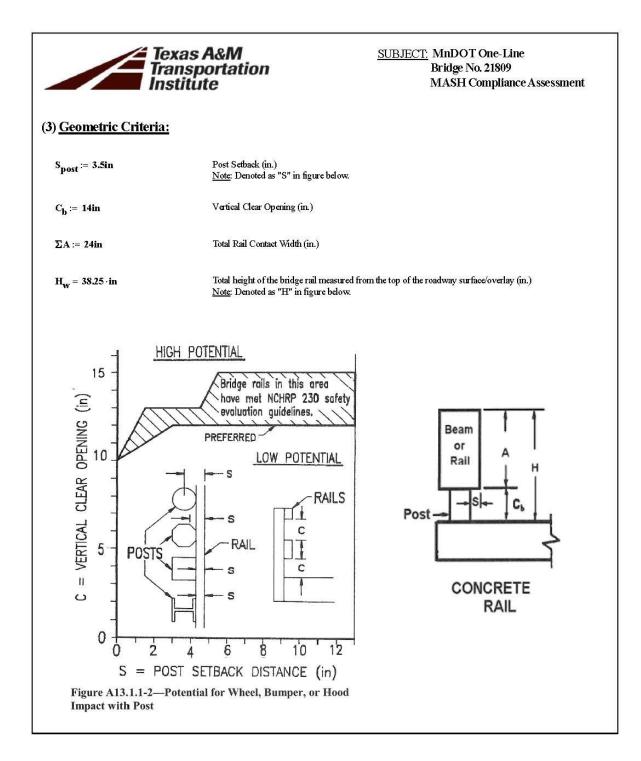
SUBJECT: MnDOT One-Line Bridge No. 21809 MASH TL-3 Compliance Assessment

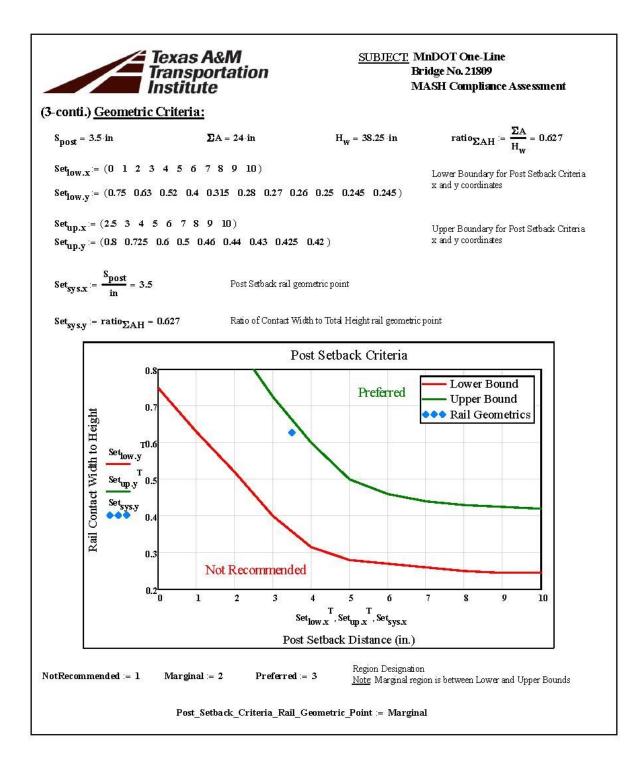
(1c) Design Force Inputs:

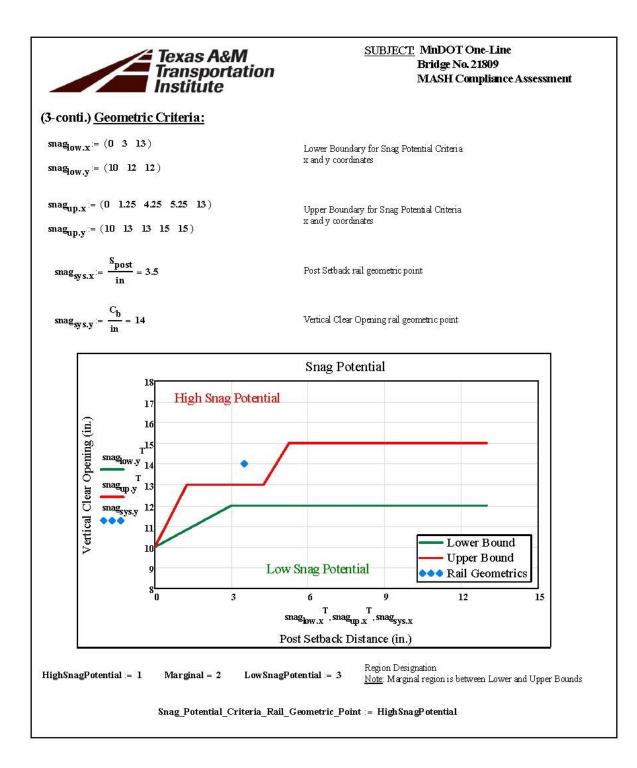
Design Forces for Traffic Railings

Test Level	Rail Height (in.)	Ft (kip)	FL (kip)	Fv (kip)	Lt/LL (ft)	Lv (ft)	He (in)	Hmin (in)
TL-1	18 or above	13.5	4.5	4.5	4.0	18.0	18.0	18.0
TL-2	18 or above	27.0	9.0	4.5	4.0	18.0	20.0	18.0
TL-3	29 or above	71.0	18.0	4.5	4.0	18.0	19.0	29.0
TL-4 (a)	36	68.0	22.0	38.0	4.0	18.0	25.0	36.0
TL-4 (b)	between 36 and 42	80.0	27.0	22.0	5.0	18.0	30.0	36.0
TL-5 (a)	42	160.0	41.0	80.0	10.0	40.0	35.0	42.0
TL-5 (b)	greater than 42	262.0	75.0	160.0	10.0	40.0	43.0	42.0
ТLб		175.0	58.0	80.0	8.0	40.0	56.0	90.0

References:

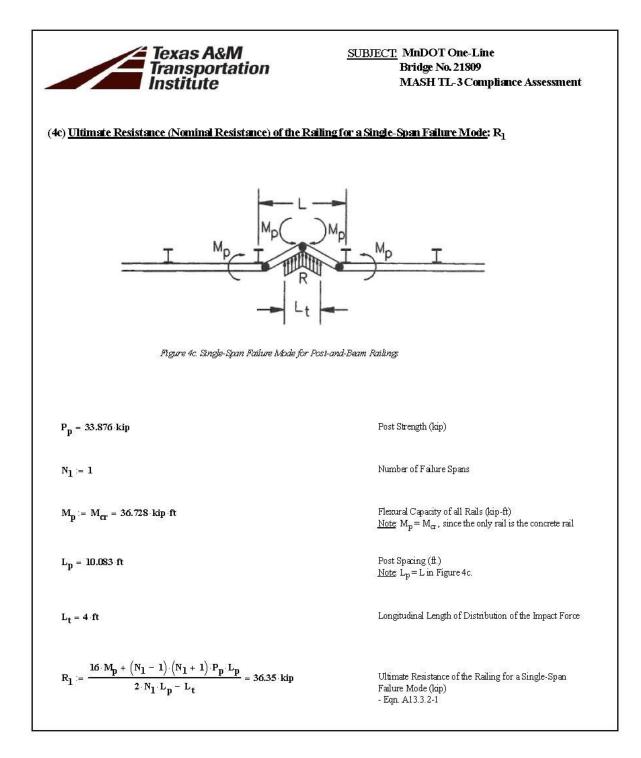

• TL-1 and TL-2 Design Forces are from AASHTO LRFD Section 13 Table A13.2-1

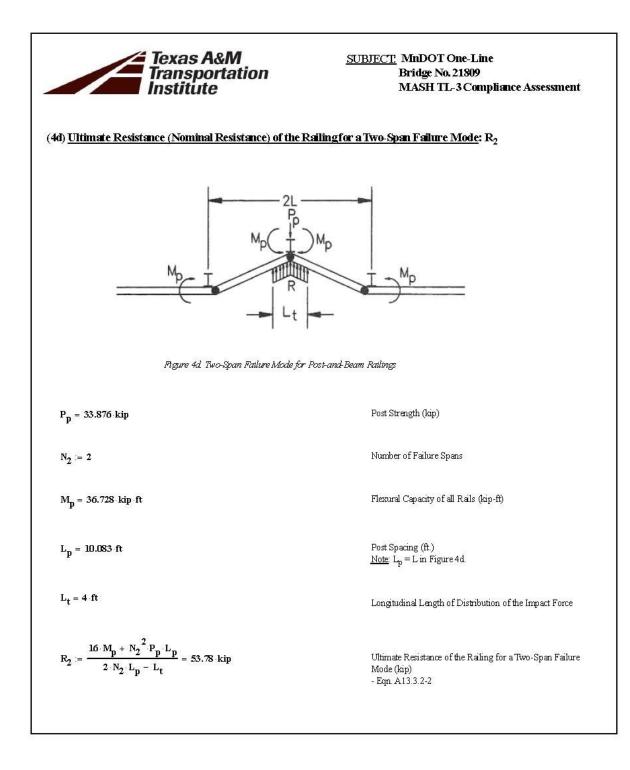

TL-3 Design Forces are from research conducted under NCHRP Project 20-07 Task 395 TL-4 (a), TL-4 (b), TL-5 (a), and TL-5 (b) Design Forces are from research conducted under NCHRP Project 22-20(2) •

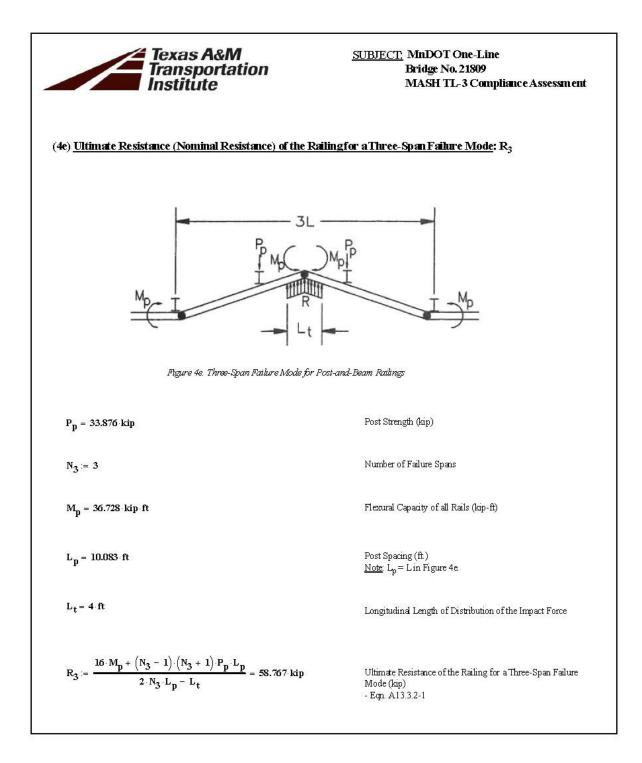

TL := 3	Test Level
F _t := 71kip	Transverse Impact Force
$L_t := 4ft$	Longitudinal Length of Distribution of Impact Force
H _e := 19in	Height of Equivalent Transverse Load
H _{min} := 29in	Minimum height of a MASH TL-3 barrier (in.)
$H_w = 38.25 \cdot in$	Height of the concrete barrier measured from the top of the roadway surface/overlay to the top of the highest rail (in.)

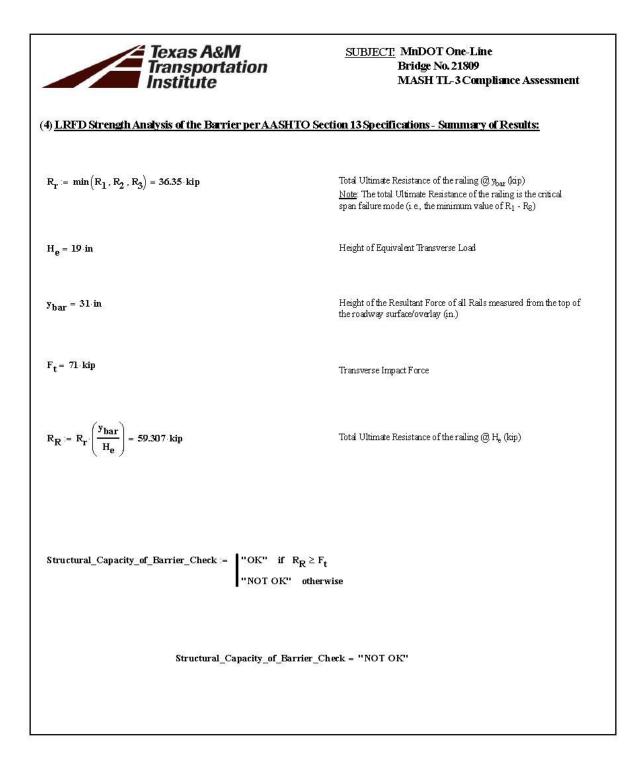
[•]

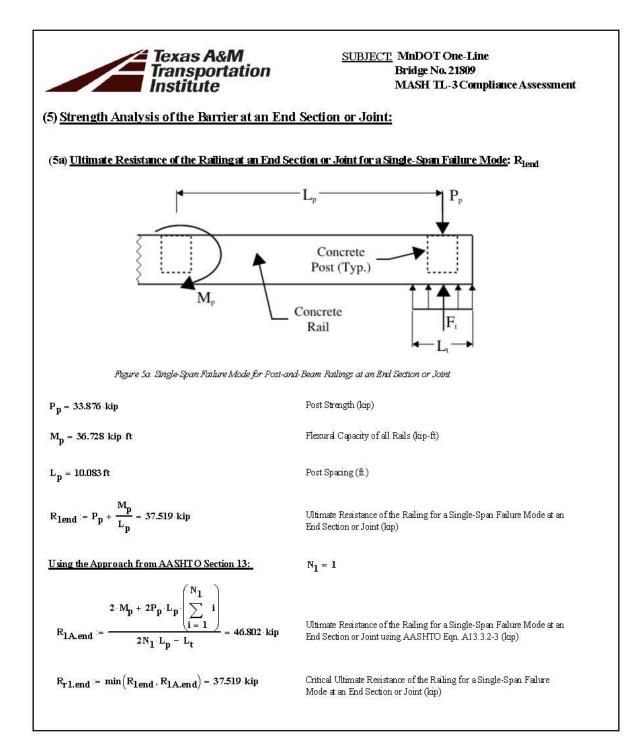
Te. Tra Ins	xas A&M Insportation Stitute	<u>SUBJECT</u> : MnDOT One-Line Bridge No. 21809 MASH TL-3 Compliance Assessment
(2) <u>Stability Criteria:</u>		
H _{min} = 29∙in	Minimum height of a MASHTL-3	barier (m.)
H _w = 38.25 in	Height of the concrete barrier measu of the highest rail (in.)	red from the top of the roadway surface/overlay to the top
Minimum_Height_of_Bar	rrier_Check = "OK" if H _w ≥ F "NOT OKAY" o	^I min therwise
	Minimum_Height_of_Barrier_Che	eck = "OK"

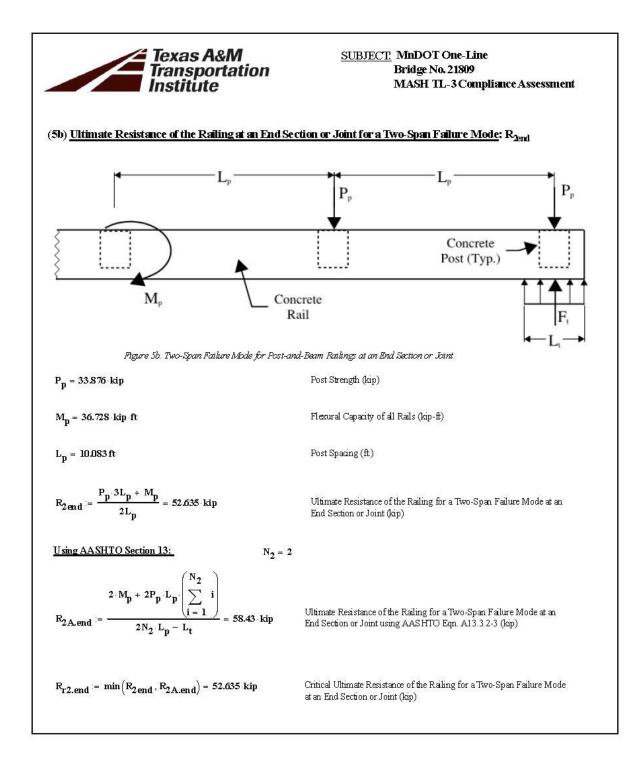



Texas A&M Transportation Institute	<u>SUBJECT.</u> MnDOT One-Line Bridge No. 21809 MASH Compliance Assessment
(3) <u>Geometric Criteria - Summary of Results:</u>	
Post_Setback_Criteria_Check := "OK" if Post_Setback_Criteria_" "NOT OK" otherwise	Rail_Geometric_Point = Preferred
Post_Setback_Criteria_Check = ''NOT	Г ОК''
Snag_Potential_Criteria_Check := "OK" if Snag_Potential_Criter "NOT OK" otherwise	ia_Rail_Geometric_Point = LowSnagPotential
Snag_Potential_Criteria_Check = "NO	Г ОК''


I


Texas A&M Transportation Institute	<u>SUBJECT</u> MnDOT One-Line Bridge No. 21809 MASH TL-3 Compliance Assessment				
(4) <u>LRFD Strength Analysis of the Barrier pe</u>	r AASHTO Section 13 Specifications:				
(4a) <u>Flexural Capacity of the Concrete Rail:</u> M _{cr}					
$f_y = 40 ksi$	Yield Strength of Concrete Reinforcing Steel, (ksi)				
$f_c = 4 ksi$	Concrete Compressive Strength				
b _{cr} = 14 in	Width of the Concrete Rail (in.)				
$A_{cr} = 1.76 \cdot in^2$	Total area of the reinforcement bars acting in tension in the Concrete Rail (in ²)				
$d_{cr} = 7 \cdot in$	Distance from the compression face of the Concrete Rail to the tension reinforcement bars (in.)				
$\mathbf{a_{cr}} \coloneqq \frac{\mathbf{A_{cr}} \cdot \mathbf{f_y}}{0.85 \mathbf{f_c} \cdot \mathbf{b_{cr}}} = 1.479 \cdot \mathbf{in}$	Whitney Stress Block Depth (in.)				
$\mathbf{M}_{\mathbf{cr}} := \mathbf{A}_{\mathbf{cr}} \cdot \mathbf{f}_{\mathbf{y}} \cdot \left(\mathbf{d}_{\mathbf{cr}} - \frac{\mathbf{a}_{\mathbf{cr}}}{2} \right) = 36.728 \text{ kip ft}$	Flexural Capacity of the Concrete Rail (kip-ft)				
y _{cr} = 31 · in	Height of the Concrete Rail measured from the top of the roadway surface'overlay to the centroid of the rail (in)				
$y_{bar} := y_{cr} = 31 in$	Height of the Resultant Force of all Rails measured from the top of the roadway surface/overlay (in.) Note: $y_{bar} = y_{cr}$, since the only rail is the concrete rail				


Texas A&M Transportation Institute	<u>SUBJECT</u> . MnDOT One-Line Bridge No. 21809 MASH TL-3 Compliance Assessment
(4b) <u>Post Strength:</u> P _p	
$f_y = 40 \cdot ksi$	Yield Strength of Concrete Reinforcing Steel (ksi)
$\mathbf{f}_{c} = 4 \cdot \mathbf{k} \mathbf{s}$	Concrete Compressive Strength
$\mathbf{b_p} = 14 \cdot \mathbf{in}$	Width of Concrete Post (in.)
$A_{p} = 2.37 \cdot in^{2}$	Area of Concrete Post reinforcement acting in tension (in ²)
d _p = 8.5 in	Distance from the compression face of the Concrete Post to the tension reinforcement bars (in.)
$\mathbf{a_p} \coloneqq \frac{\mathbf{A_p} \cdot \mathbf{f_y}}{0.85 \cdot \mathbf{f_c} \cdot \mathbf{b_p}} = 1.992 \cdot \mathbf{in}$	Whitney Stress Block Depth (in.)
$M_{post} = A_p \cdot f_y \cdot \left(d_p - \frac{a_p}{2}\right) = 59.283 \cdot kip \cdot ft$	Flexural Capacity of the Concrete Post (kip-ft)
y _{bar} = 31 in	Height of the Resultant Force of all Rails measured from the top of the roadway surface/overlay (in.)
h _{curb} = 10 in	Height of curb (in.)
$\mathbf{y}_{\mathbf{p}} := \mathbf{y}_{\mathbf{bar}} - \mathbf{h}_{\mathbf{curb}} = 21 \cdot \mathbf{in}$	Height measured from the bottom of the Concrete Post to the Resultant Force of all Rails (in.)
$P_{p} := \frac{M_{p \text{ ost}}}{y_{p}} = 33.876 \text{ kip}$	Post Strength (kip)



 SUBJECT:
 MnDOT One-Line

 Bridge No. 21809
 MASH TL-3 Compliance Assessment

(5) <u>Strength Analysis of the Barrier at an End Section or Joint-Summary of Results:</u>

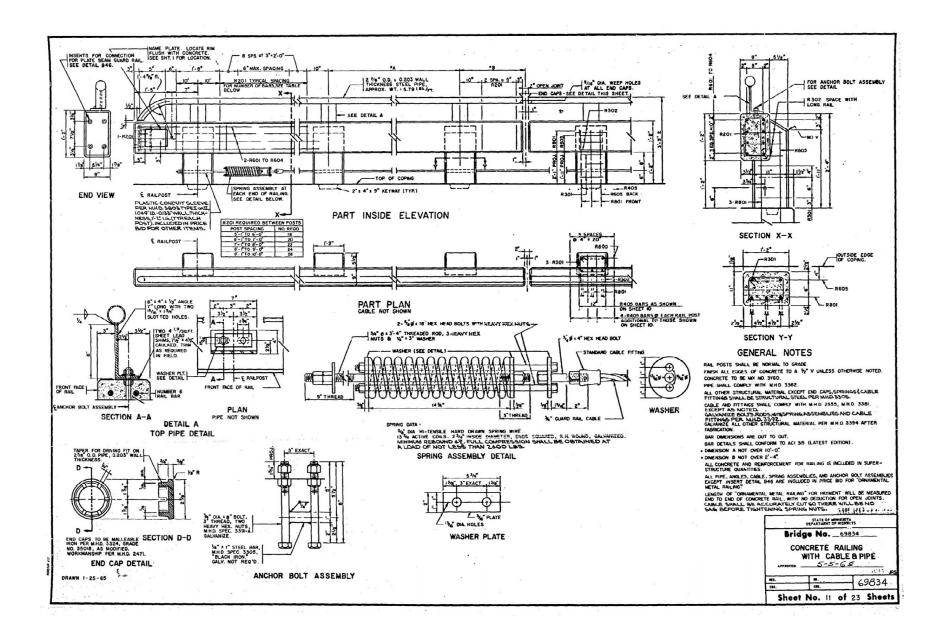
R _{r1.end} = 37.519 kip	Critical Ultimate Resistance of the Railing for a Single-Span Failure Mode at an End Section or Joint (kip)			
R _{r2.end} = 52.635 kip	Critical Ultimate Resistance of the Railing for a Two-Span Failure Mode at an End Section or Joint (kip)			
$R_{rend} := \min(R_{r1.end}, R_{r2.end}) = 37.519 \cdot kip$	Total Ultimate Resistance of the railing at an End Section or Joint @y _{bar} (kip) <u>Note</u> : The total Ultimate Resistance of the railing is the critical span failure mode (i.e., the minimum value of $R_{r1end} \& R_{r2end}$)			
y _{bar} = 31 in	Height of the Resultant Force of all Rails measured from the top of the roadway surface/overlay (in.)			
H _e = 19 in	Height of Equivalent Transverse Load			
$F_t = 71 \cdot kip$	Transverse Impact Force			
$R_{\text{Rend}} = R_{\text{rend}} \left(\frac{y_{\text{bar}}}{H_{\text{e}}} \right) = 61.215 \text{ kip}$	Total Ultimate Resistance of the railing at an End Section or Joint (@ $\rm H_{e}$ (kip)			
Structural_Capacity_of_Barrier_at_End_Section_	Check := "OK" if $R_{Rend} \ge F_t$ "NOT OK" otherwise			
Structural_Capacity_ol	f_Barrier_at_End_Section_Check = "NOT OK"			

<u>SUBJECT</u> MnDOT One-Line Bridge No. 21809 MASH TL-3 Compliance Assessment

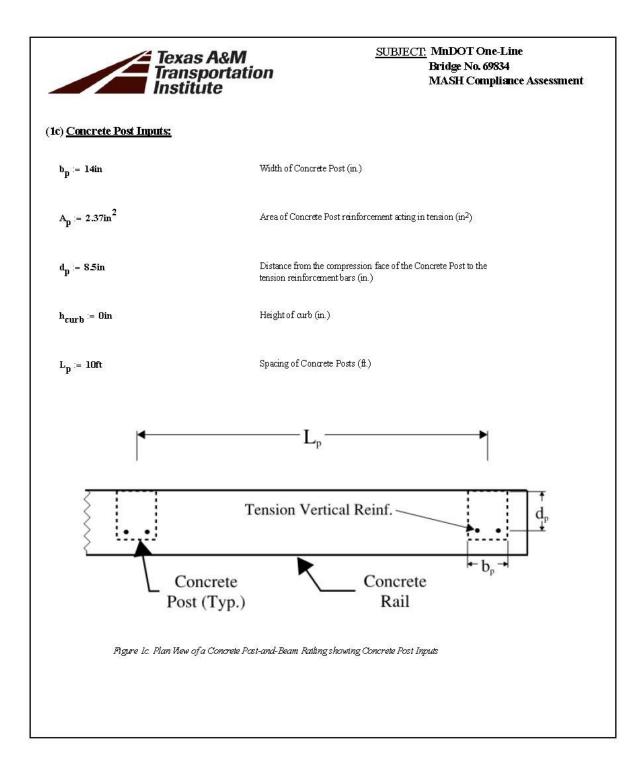
(7) Conclusions:

Minimum_Height_of_Barrier_Check = "OK"

Post_Setback_Criteria_Check = "NOT OK"


Snag_Potential_Criteria_Check = "NOT OK"

Structural_Capacity_of_Barrier_Check = "NOT OK"


Structural_Capacity_of_Barrier_at_End_Section_Check = "NOT OK"

The One Line Barrier on Bridge No. 21809 does <u>not satisfy</u> all MASH TL-3 Criteria

APPENDIX C4: ONE-LINE BRIDGE RAIL ON BRIDGE NO. 69834

) <u>General Information an</u> Reference: AASHTO MASH Con Assess the adequacy of the barrier	ditions.	
	Dased ON AASITIC LIVE Section 15 thten	a.
1a) <u>General Inputs:</u>		
f' _c = 4000 psi	Compressive Strength of (Concrete (psi)
$f_y := 40ksi$	Yield Strength of Concrete	e Reinforcing Steel, (ksi)
E _s = 29000ksi	Modulus of Elasticity of S	ted (ksi)
$H_{W} := 2Sin$	Height of the concrete bars surface/overlay to the top	ier measured from the top of the roadway of the highest rail (in.)
t _o := Oin	Thickness of overlay (in.)	
$\mathbf{h}_{\mathbf{W}} = \mathbf{H}_{\mathbf{W}} + \mathbf{t}_{0} = 28 \cdot \mathbf{in}$	Total height of the barrier	
(1b) <u>Concrete Rail Inputs:</u>		
b _{cr} := 14in	Width of the Concrete Rail (in.)	
		b _{cr}
A _{cr} := 1.76in ²	Total area of the reinforcement bars acting	
	in tension in the Concrete Rail (in^2)	
d _{cr} := 7in	Distance from the compression face of the Concrete Rail to the tension reinforcement I (in.)	Pars Pigure Ib. Profile View showing Concrete Rail Inputs
y _{cr} := 21in	Height of the Concrete Rail measured from surface/overlay to the centroid of the rail (ir	

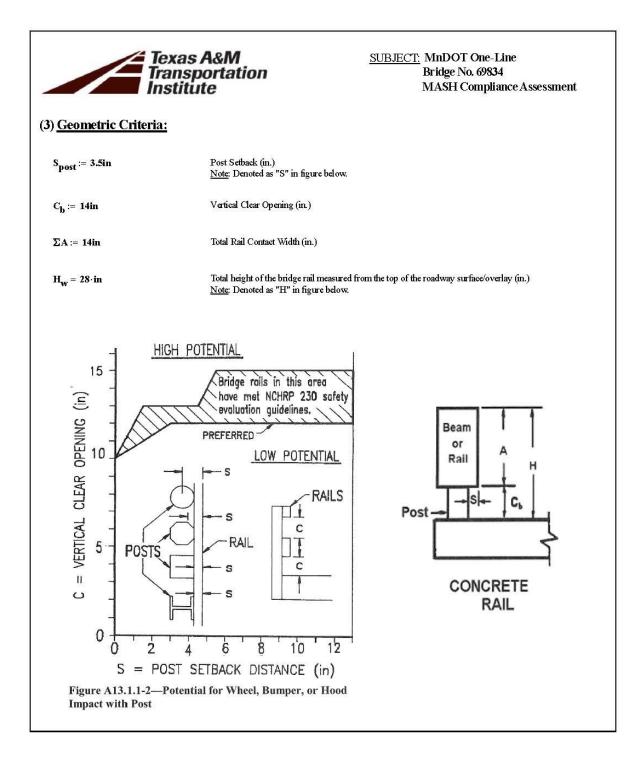
SUBJECT: MnDOT One-Line Bridge No. 69834 MASH Compliance Assessment

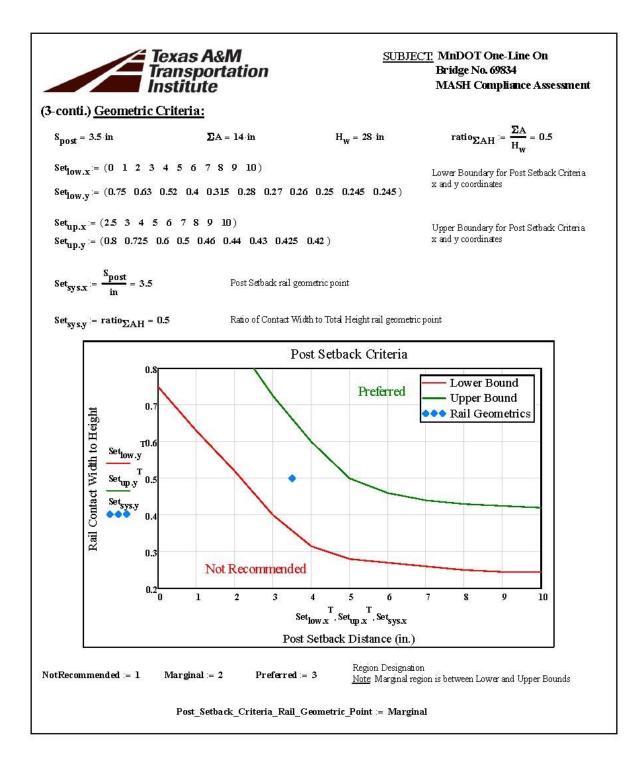
(1c) Design Force Inputs:

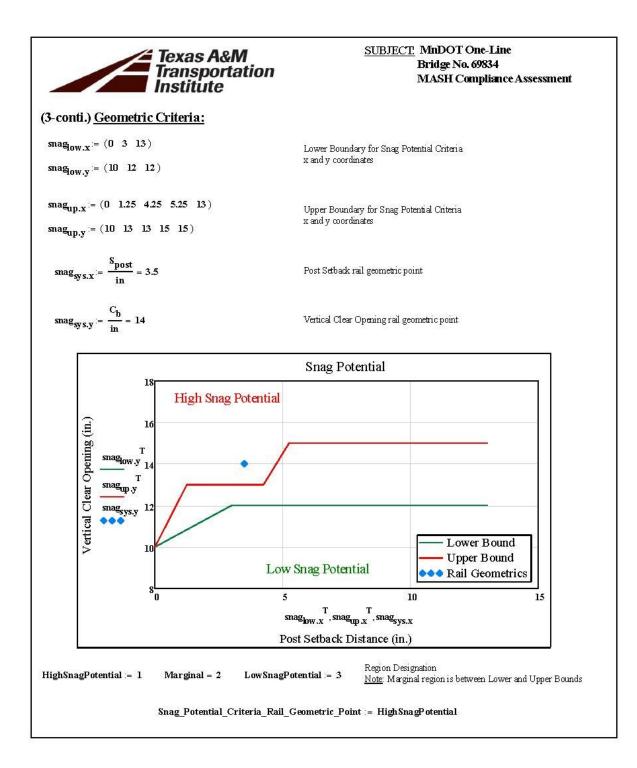
Design Forces for Traffic Railings

Test Level	Rail Height (in.)	Ft (kip)	FL (kip)	Fv (kip)	Lt/LL (ft)	Lv (ft)	H₂ (in)	Hmin (in)
TL-1	18 or above	13.5	4.5	4.5	4.0	18.0	18.0	18.0
TL-2	18 or above	27.0	9.0	4.5	4.0	18.0	20.0	18.0
TL-3	29 or above	71.0	18.0	4.5	4.0	18.0	19.0	29.0
TL-4 (a)	36	68.0	22.0	38.0	4.0	18.0	25.0	36.0
TL-4 (b)	between 36 and 42	80.0	27.0	22.0	5.0	18.0	30.0	36.0
TL-5 (a)	42	160.0	41.0	80.0	10.0	40.0	35.0	42.0
TL-5 (b)	greater than 42	262.0	75.0	160.0	10.0	40.0	43.0	42.0
ТLб		175.0	58.0	80.0	8.0	40.0	56.0	90.0

References:

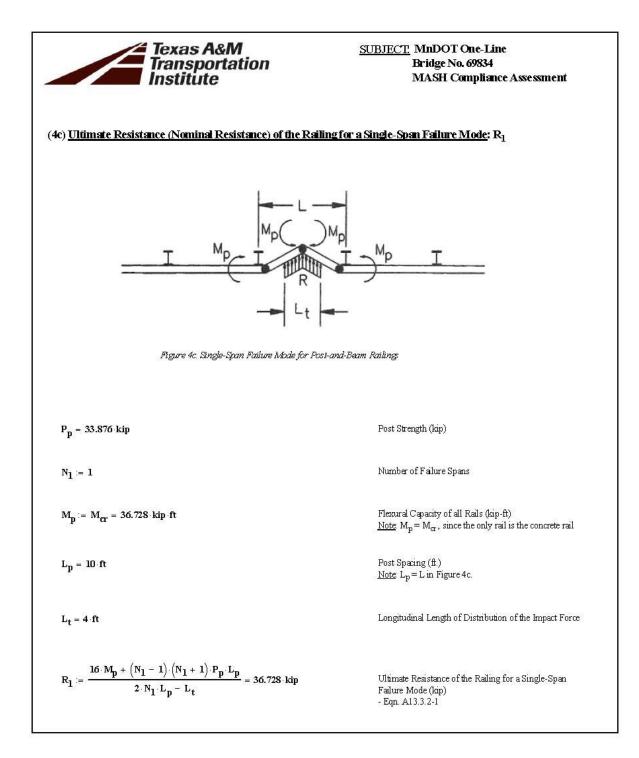

• TL-1 and TL-2 Design Forces are from AASHTO LRFD Section 13 Table A13.2-1

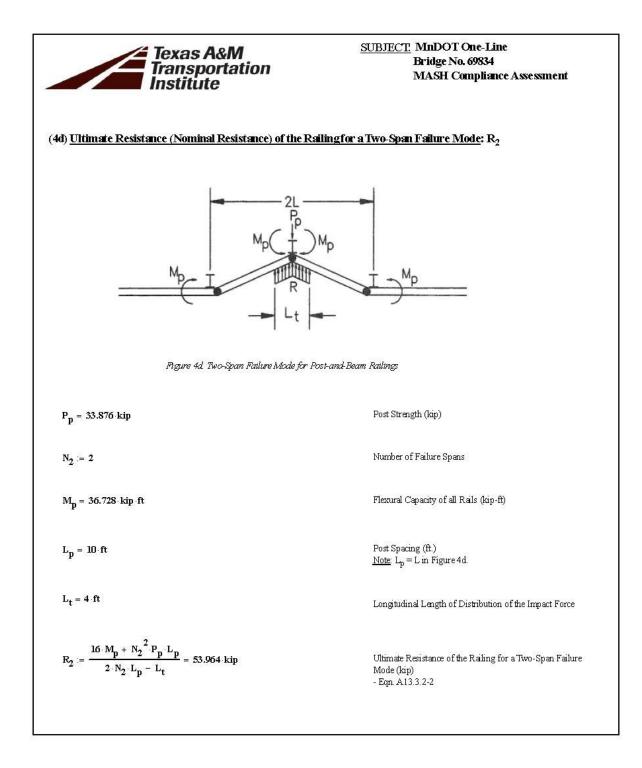

•	TL-3 Design Forces are from research conducted under NCHRP Project 20-07 Task 395
-	TT 4 (a) TT 4 (b) TT 5 (a) an dTT 5 (b) Design Fernance and from macanaly and during

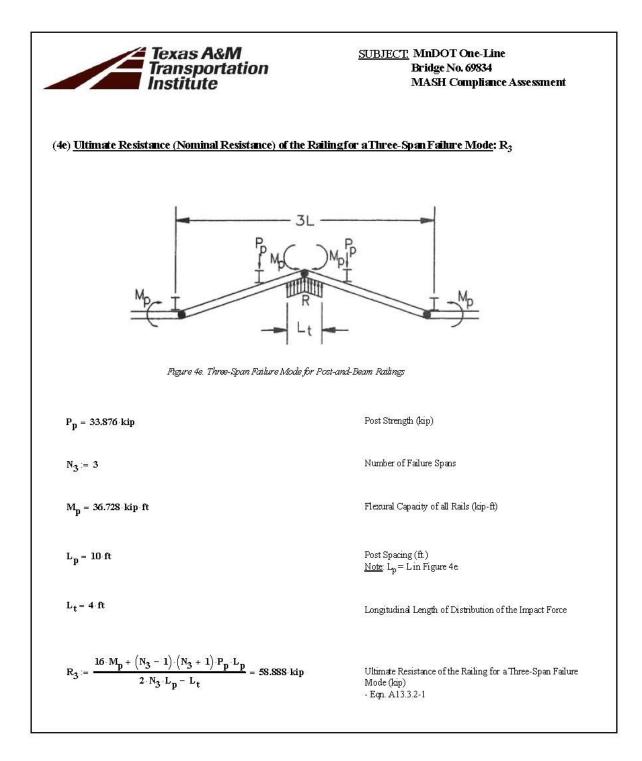

 TL-4 (a), TL-4 (b), TL-5 (a), and TL-5 (b) Design Forces are from research conducted under NCHRP Project 22-20(2)

TL := 3	Test Level
F _t := 71kip	Transverse Impact Force
$L_t := 4ft$	Longitudinal Length of Distribution of Impact Force
H _e := 19in	Height of Equivalent Transverse Load
H _{min} := 29in	Minimum height of a MASH TL-2 barrier (in.)
H _W = 28 in	Height of the concrete barrier measured from the top of the roadway surface/overlay to the top of the highest rail (in.)

	Texas A&M transportation Institute	<u>SUBJECT:</u> MnDOT One-Line Bridge No. 69834 MASH Compliance Assessment		
(2) <u>Stability Criteria:</u>				
H _{min} = 29∙in	Minimum height of a MASHTL-2 barrier (i	a.)		
H _w = 28 in	Height of the concrete barrier measured from of the highest rail (in.)	the top of the roadway surface overlay to the top		
$\begin{aligned} & \text{Minimum}_\text{Height}_\text{of}_\text{Barrier}_\text{Check} := & \text{"OK" if } H_W \geq H_{\min} \\ & \text{"NOT OKAY" otherwise} \end{aligned}$				
Minimum_Height_of_Barrier_Check = "NOT OKAY"				

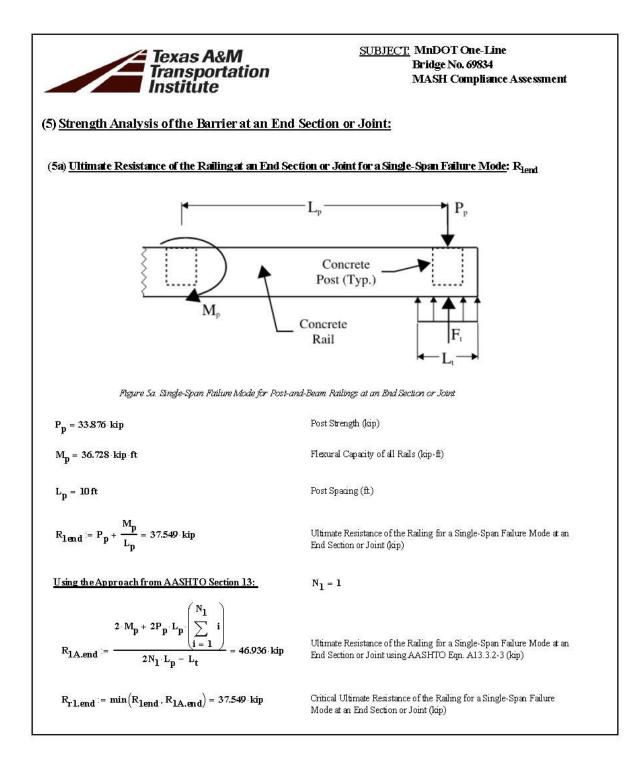


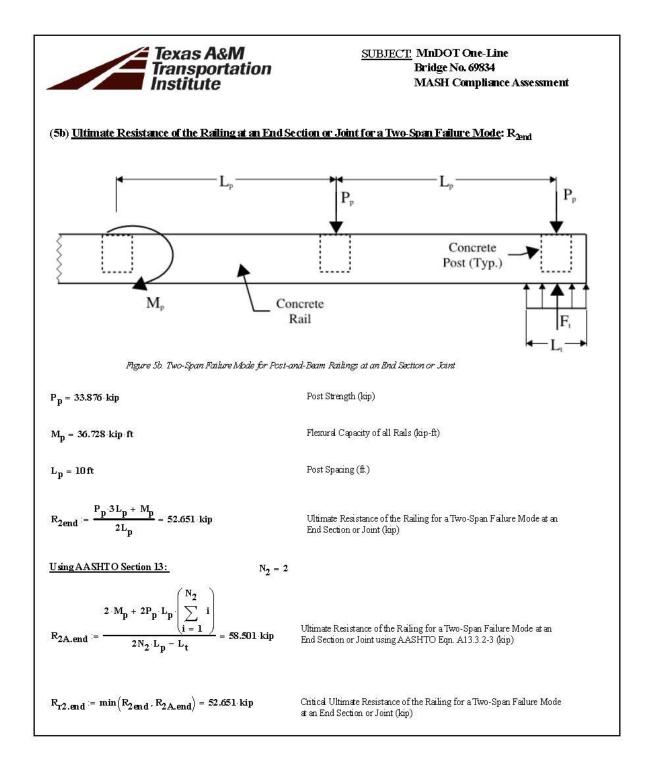

Texas A&M Transportation Institute	<u>SUBJECT</u> MnDOT One-Line Bridge No. 69834 MASH Compliance Assessment
(3) <u>Geometric Criteria - Summary of Results:</u>	
Post_Setback_Criteria_Check := "OK" if Post_Setback_Cr "NOT OK" otherwise	iteria_Rail_Geometric_Point = Preferred
Post_Setback_Criteria_Check =	- "NOT OK"
Snag_Potential_Criteria_Check := "OK" if Snag_Potential "NOT OK" otherwise	_Criteria_Rail_Geometric_Point = LowSnagPotential
Snag_Potential_Criteria_Check	= "NOT OK"

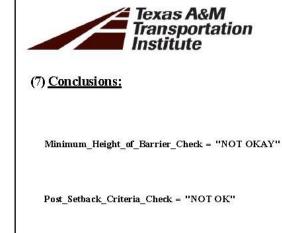

I

Texas A&M Transportation Institute	<u>SUBJECT</u> : MnDOT One-Line Bridge No. 69834 MASH Compliance Assessment
(4) <u>LRFD Strength Analysis of the Barrier pe</u>	er AASHTO Section 13 Specifications:
(4a) <u>Flexural Capacity of the Concrete Rail:</u> M _{cr}	
$f_y = 40 \cdot ksi$	Yield Strength of Concrete Reinforcing Steel, (ksi)
$f_c = 4 k s$	Concrete Compressive Strength
$b_{cr} = 14 \text{ in}$	Width of the Concrete Rail (in.)
A _{cr} = 1.76 in ²	Total area of the reinforcement bars acting in tension in the Concrete Rail (in ²)
$\mathbf{d_{cr}} = 7 \cdot \mathbf{in}$	Distance from the compression face of the Concrete Rail to the tension reinforcement bars (in.)
$\mathbf{a}_{\mathbf{cr}} := \frac{\mathbf{A}_{\mathbf{cr}} \cdot \mathbf{f}_{\mathbf{y}}}{\mathbf{0.85f}_{\mathbf{c}} \cdot \mathbf{b}_{\mathbf{cr}}} = 1.479 \cdot \mathbf{in}$	Whitney Stress Block Depth (in.)
$\mathbf{M}_{\mathbf{cr}} := \mathbf{A}_{\mathbf{cr}} \cdot \mathbf{f}_{\mathbf{y}} \cdot \left(\mathbf{d}_{\mathbf{cr}} - \frac{\mathbf{a}_{\mathbf{cr}}}{2} \right) = 36.728 \cdot \mathbf{kip} \cdot \mathbf{ft}$	Flexural Capacity of the Concrete Rail (kip-ft)
y _{cr} = 21·in	Height of the Concrete Rail measured from the top of the roadway surface'overlay to the centroid of the rail (in)
$y_{bar} := y_{cr} = 21$ in	Height of the Resultant Force of all Rails measured from the top of the roadway surface/overlay (in.) Note: $y_{bar} = y_{cr}$, since the only rail is the concrete rail

Texas A&M Transportation Institute	<u>SUBJECT:</u> MnDOT One-Line Bridge No. 69834 MASH Compliance Assessment
(4b) <u>Post Strength:</u> P _p	
$f_y = 40 \cdot ksi$	Yield Strength of Concrete Reinforcing Steel (ksi)
$f_c = 4 \cdot ksi$	Concrete Compressive Strength
$b_p = 14 \cdot in$	Width of Concrete Post (in.)
$A_p = 2.37 \cdot in^2$	Area of Concrete Post reinforcement acting in tension (in^2)
d _p = 8.5 in	Distance from the compression face of the Concrete Post to the tension reinforcement bars (in.)
$\mathbf{a}_{\mathbf{p}} := \frac{\mathbf{A}_{\mathbf{p}} \cdot \mathbf{f}_{\mathbf{y}}}{0.85 \cdot \mathbf{f}_{\mathbf{c}} \cdot \mathbf{b}_{\mathbf{p}}} = 1.992 \cdot \mathbf{i}\mathbf{n}$	Whitney Stress Block Depth (in.)
$M_{post} = A_p \cdot f_y \cdot \left(d_p - \frac{a_p}{2}\right) = 59.283 \cdot kip \cdot ft$	Flexural Capacity of the Concrete Post (kip-ft)
$y_{har} = 21 \cdot in$	Height of the Resultant Force of all Rails measured from the top of the roadway surface/overlay (in.)
h _{curb} = 0 ∙in	Height of curb (in.)
$\mathbf{y_p} := \mathbf{y_{bar}} - \mathbf{h_{curb}} = 21 \cdot \mathbf{in}$	Height measured from the bottom of the Concrete Post to the Resultant Force of all Rails (in)
$P_p := \frac{M_{p \text{ ost}}}{y_p} = 33.876 \text{ kip}$	Post Strength (kip)



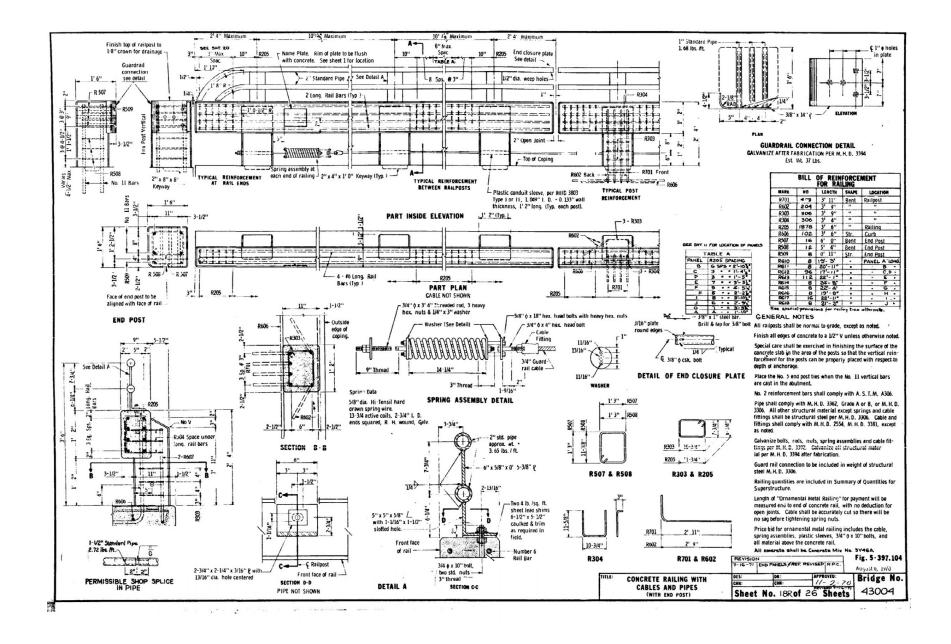



Texas A&M Transportation Institute	<u>SUBJECT</u> : MnDOT One-Line Bridge No. 69834 MASH Compliance Assessment
(41) <u>Ultimate Resistance (Nominal Resistance) of the R</u> a	alling for a 4-8 Span Failure Mode: R ₄ - R ₈
$P_p = 33.876 \cdot kip$ $L_p = 10 ft$	$M_p = 36.728 \text{ kip ft}$ $L_t = 4 \text{ ft}$
$N_4 := 4$ $N_5 := 5$ $N_6 := 6$	N ₇ := 7 N ₈ := 8
$R_{4} := \frac{16 \cdot M_{p} + N_{4}^{2} \cdot P_{p} \cdot L_{p}}{2 \cdot N_{4} \cdot L_{p} - L_{t}} = 79.05 \cdot kip$	Ultimate Resistance of the Railing for a Four-Span Failure Mode (kip) - Eqn. A13.3.2-2
$\mathbf{R}_{5} := \frac{16 \cdot \mathbf{M}_{p} + (\mathbf{N}_{5} - 1) \cdot (\mathbf{N}_{5} + 1) \cdot \mathbf{P}_{p} \cdot \mathbf{L}_{p}}{2 \cdot \mathbf{N}_{5} \cdot \mathbf{L}_{p} - \mathbf{L}_{t}} = 90.812 \cdot \mathbf{kip}$	Ultimate Resistance of the Railing for a Five-Span Failure Mode (kip) - Eqn. A13.3.2-1
$R_{6} := \frac{16 \cdot M_{p} + N_{6}^{2} \cdot P_{p} \cdot L_{p}}{2 \cdot N_{6} \cdot L_{p} - L_{t}} = 110.199 \cdot kip$	Ultimate Resistance of the Railing for a Six-Span Failure Mode (kip) - Eqn. A13.3.2-2
$\mathbf{R}_{7} \coloneqq \frac{16 \cdot \mathbf{M}_{p} + (\mathbf{N}_{7} - 1) \cdot (\mathbf{N}_{7} + 1) \cdot \mathbf{P}_{p} \cdot \mathbf{L}_{p}}{2 \cdot \mathbf{N}_{7} \cdot \mathbf{L}_{p} - \mathbf{L}_{t}} = \mathbf{123.884 \cdot kip}$	Ultimate Resistance of the Railing for a Seven-Span Failure Mode (kip) - Eqn. A13.3.2-1
$R_{g} := \frac{16 \cdot M_{p} + N_{g}^{2} \cdot P_{p} \cdot L_{p}}{2 \cdot N_{g} \cdot L_{p} - L_{t}} = 142.746 \text{ kip}$	Ultimate Resistance of the Railing for a Eight-Span Failure Mode (kip) - Eqn. A13.3.2-2

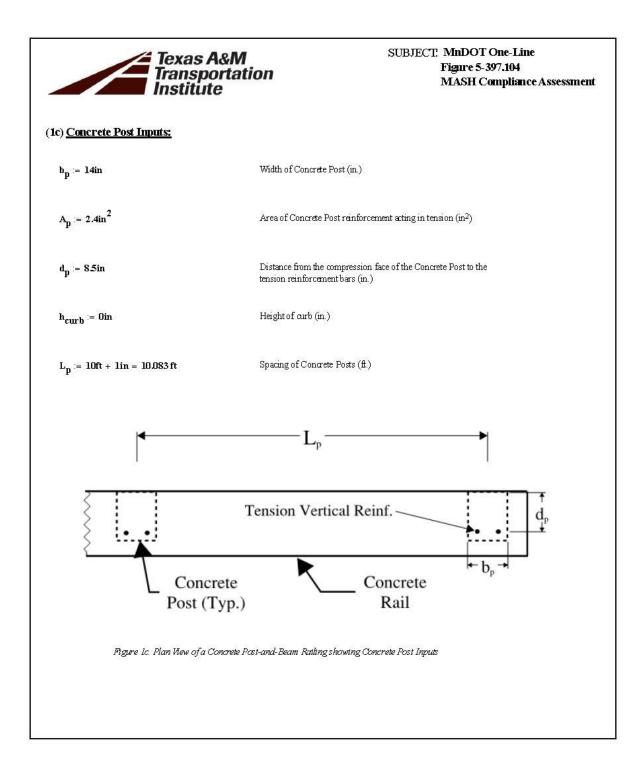
Texas A&M Transportation Institute	<u>SUBJECT</u> MnDOT One-Line Bridge No. 69834 MASH Compliance Assessment	
(5) <u>Strength Analysis of the Barrier at an 1</u>	End Section or Joint-Summary of Results:	
R _{rl.end} = 37.549 kip	Critical Ultimate Resistance of the Railing for a Single-Span Failure Mode at an End Section or Joint (kip)	
R _{r2.end} = 52.651 kip	Critical Ultimate Resistance of the Railing for a Two-Span Failure Mode at an End Section or Joint (kip)	
$\mathbf{R_{rend}} := \min(\mathbf{R_{r1.end}}, \mathbf{R_{r2.end}}) = 37.549 \cdot \mathrm{kip}$	Total Ultimate Resistance of the railing at an End Section or Joint $(\mathfrak{gy}_{bar} (kip) $ <u>Note</u> The total Ultimate Resistance of the railing is the critical span failure mode (i.e., the minimum value of R _{tlend} & R _{t2end})	
y _{bar} = 21 in	Height of the Resultant Force of all Rails measured from the top of the roadway surface/overlay (in.)	
H _e = 19 in	Height of Equivalent Transverse Load	
$F_t = 71 \cdot kip$	Transverse Impact Force	
$R_{Rend} := R_{rend} \left(\frac{y_{bar}}{H_e} \right) = 41.501 \text{ kip}$	Total Ultimate Resistance of the railing at an End Section or Joint (@ $\rm H_e$ (kip)	
Structural_Capacity_of_Barrier_at_End_Section_Check := "OK" if R _{Rend} ≥ F _t "NOT OK" otherwise		
Structural_Capacity_of_	Barrier_at_End_Section_Check = "NOT OK"	

Snag_Potential_Criteria_Check = "NOT OK"

Structural_Capacity_of_Barrier_Check = "NOT OK"


Structural_Capacity_of_Barrier_at_End_Section_Check = "NOT OK"

The One Line barrier on Bridge No. 69834 does <u>not satisfy</u> all MASHTL-3 Criteria


SUBJECT: MnDOT One-Line Bridge No. 69834

MASH Compliance Assessment

APPENDIX C5: ONE-LINE BRIDGE RAIL ON FIGURE 5-397.104

Trains	cas A&M nsportation titute		MnDOT One-Line Figure 5-397.104 MASH Compliance Assessment
) General Information Reference: AASHTO MASH (Assess the adequacy of the bar		Section 13 criteria.	
(1a) <u>General Inputs:</u>			
f' _c := 4000 psi	Compro	essive Strength of Concrete (psi)	
$f_y := 40ksi$	Yield S	trength of Concrete Reinforcing	Steel, (ksi)
E _s := 29000ksi	Moduli	is of Elasticity of Steel (ksi)	
H _w := 28in		of the concrete barrier measured /overlay to the top of the highest	
t ₀ := 0in	Thickne	ess of overlay (in.)	
$\mathbf{h}_{\mathbf{W}} = \mathbf{H}_{\mathbf{W}} + \mathbf{t}_{0} = 28 \cdot \mathbf{in}$	Total he	aight of the barrier (in.)	d _{cr}
(1b) <u>Concrete Rail Inputs:</u>			
b _{cr} := 14in	Width of the Concrete R	ail (in.)	
A _{cr} := 1.76in ²	Total area of the reinforc in tension in the Concret	83.9	b _{cr}
d _{cr} ∶= 7in	Distance from the comp Concrete Rail to the tens (in.)		Agure 1b. Profile View showing Concrete Rail Inputs
y _{cr} := 21in	Height of the Concrete F surface/overlay to the ce	Rail measured from the top of the ntroid of the rail (in.)	roadway

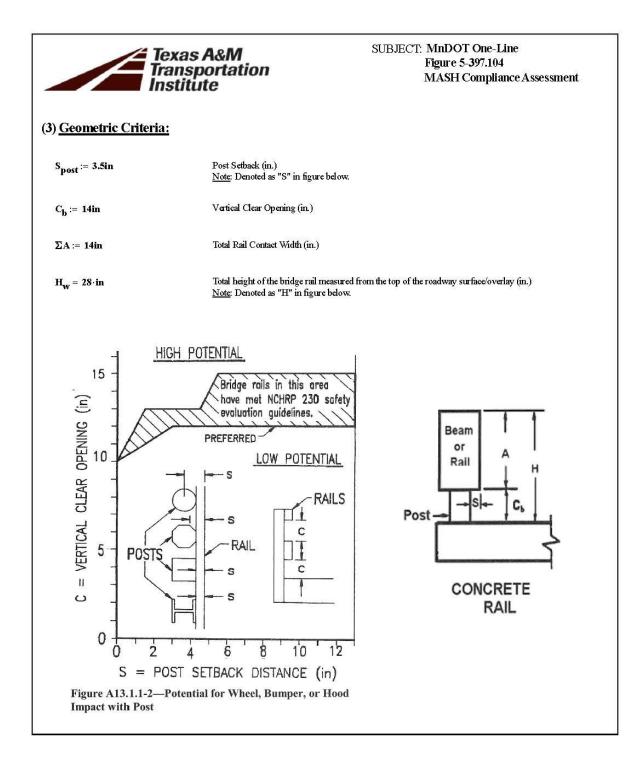
SUBJECT: MnDOT One-Line Figure 5-397.104 MASH Compliance Assessment

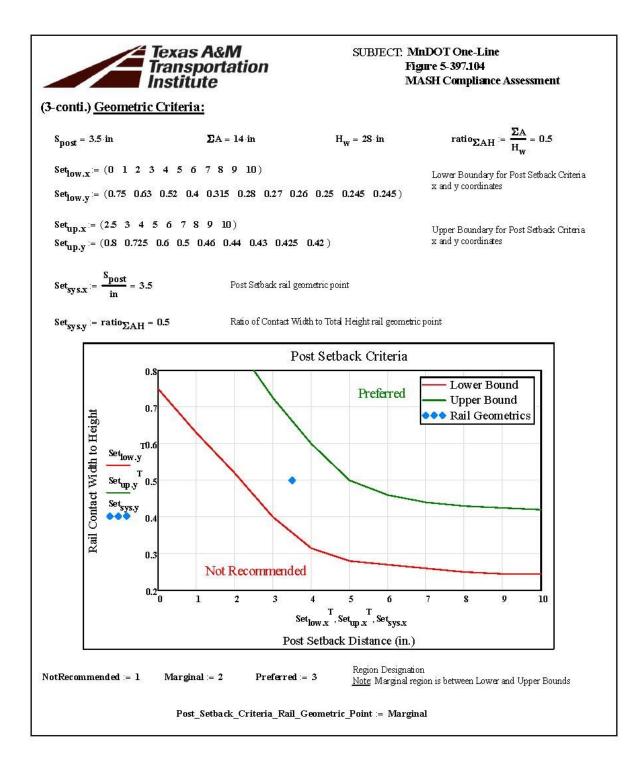
(1c) Design Force Inputs:

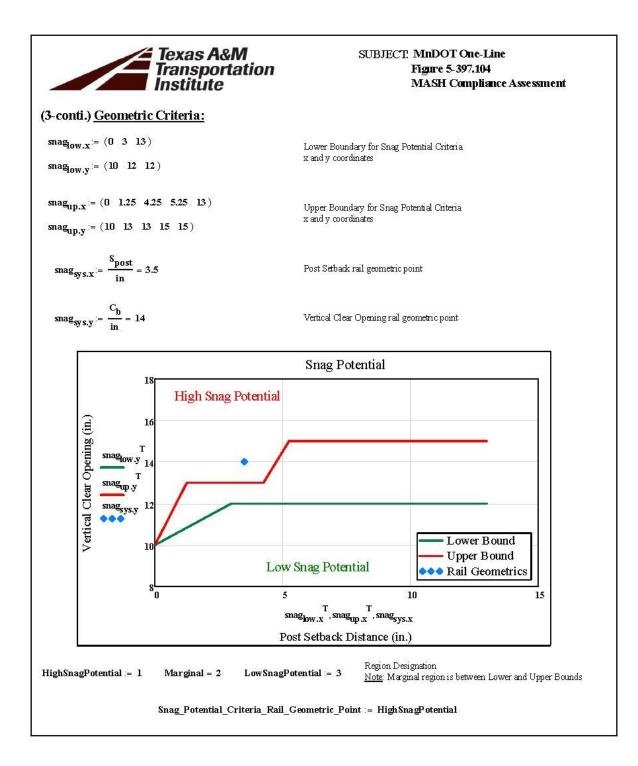
Design Forces for Traffic Railings

Test Level	Rail Height (in.)	Ft (kip)	FL (kip)	Fv (kip)	Lt/L1 (ft)	Lv (ft)	H₂ (in)	Hmin (in)
TL-1	18 or above	13.5	4.5	4.5	4.0	18.0	18.0	18.0
TL-2	18 or above	27.0	9.0	4.5	4.0	18.0	20.0	18.0
TL-3	29 or above	71.0	18.0	4.5	4.0	18.0	19.0	29.0
TL-4 (a)	36	68.0	22.0	38.0	4.0	18.0	25.0	36.0
TL-4 (b)	between 36 and 42	80.0	27.0	22.0	5.0	18.0	30.0	36.0
TL-5 (a)	42	160.0	41.0	80.0	10.0	40.0	35.0	42.0
TL-5 (b)	greater than 42	262.0	75.0	160.0	10.0	40.0	43.0	42.0
ТLб		175.0	58.0	80.0	8.0	40.0	56.0	90.0

References:

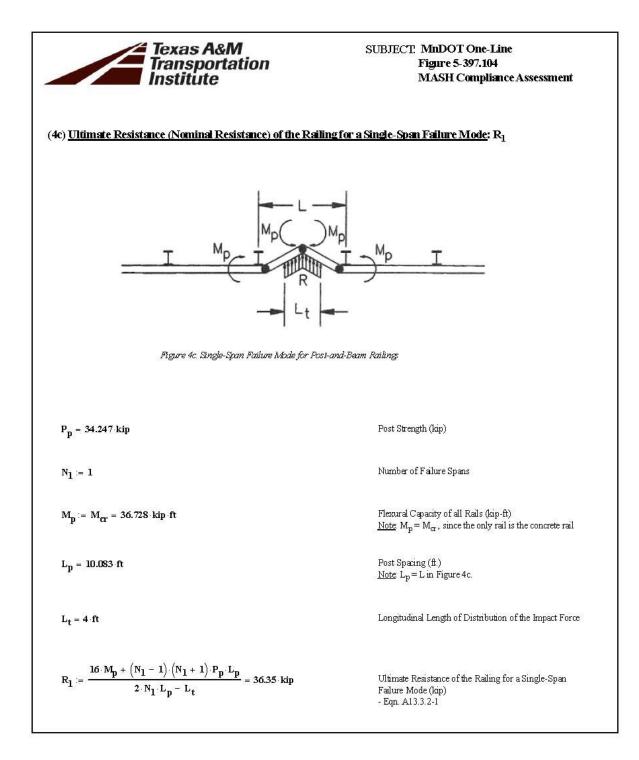

• TL-1 and TL-2 Design Forces are from AASHTO LRFD Section 13 Table A13.2-1

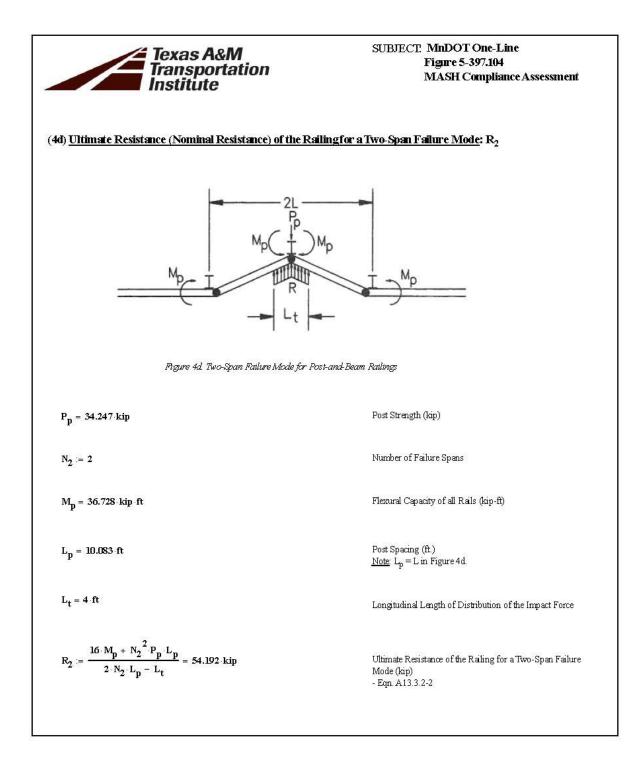

•	TL-3 Design Forces are from research conducted under NCHRP Project 20-07 Task 395
	TL-4 (a) TL-4 (b) TL-5 (a) and TL-5 (b) Design Forces are from research conducted und

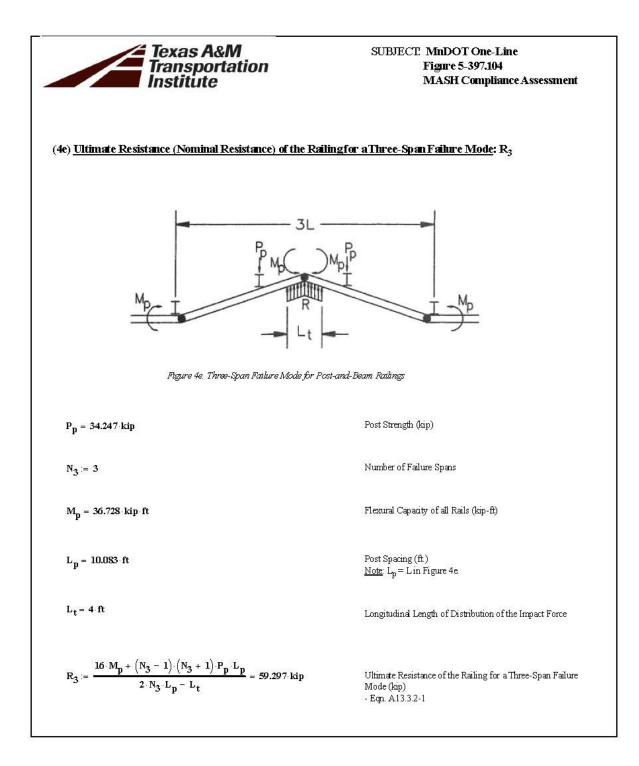

(a), 1L-4 (b), TL-5 (a), and TL-5 (b) Design Forces are from research conducted under NCHRP Project 22-20(2)

TL := 3	Test Level
F _t := 71kip	Transverse Impact Force
$L_t := 4ft$	Longitudinal Length of Distribution of Impact Force
H _e := 19in	Height of Equivalent Transverse Load above pavement surface (in)
$h_e = H_e + t_o = 19$ in	Total height of equivalent transverse load (in).
H _{min} = 29in	Minimum height of a MASH TL-2 barrier (in.)
$H_W = 28 \text{ in}$	Height of the concrete barrier measured from the top of the roadway surface/overlay to the top of the highest rail (in.)

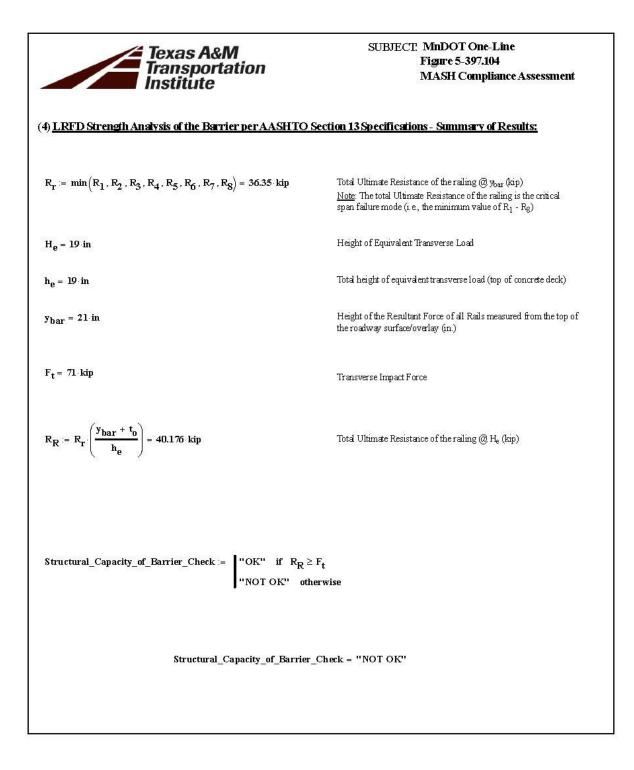
Tra Tra Ins	exas A&M ansportation stitute	SUBJECT: MnDOT One-Line Figure 5-397.104 MASH Compliance Assessment
(2) <u>Stability Criteria:</u>		
$H_{min} = 29 \cdot in$	Minimum height of a MASHTL	3 barrier (in.)
H _w = 28 ∙in	Height of the concrete barrier mea of the highest rail (in.)	sured from the top of the roadway surface/overlay to the top
Minimum_Height_of_Ba	rrier_Check := "OK" if H _w ≥ "NOT OKAY"	H _{min} otherwise
	Minimum_Height_of_Barrier_C	heck = "NOT OKAY"

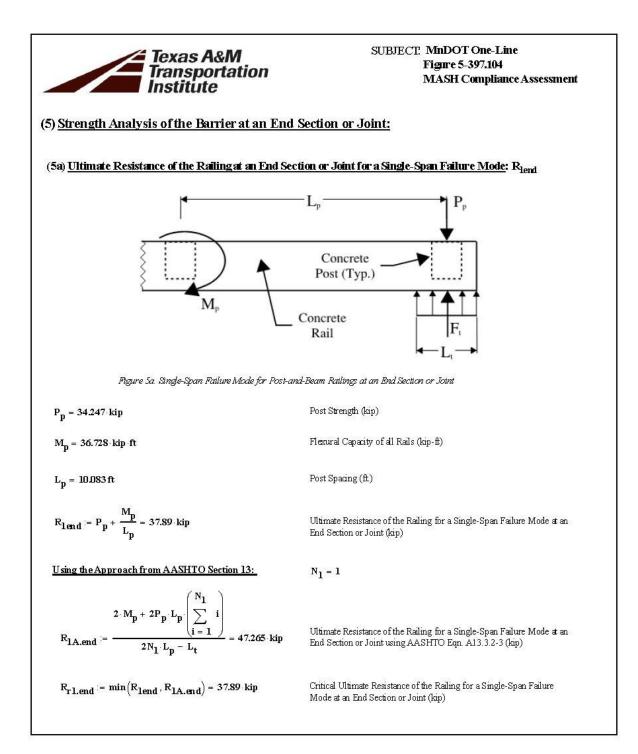


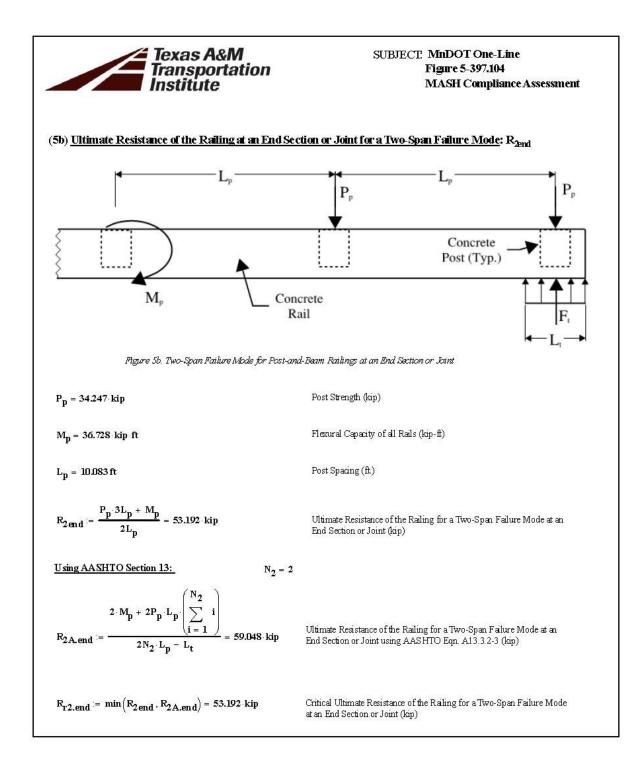


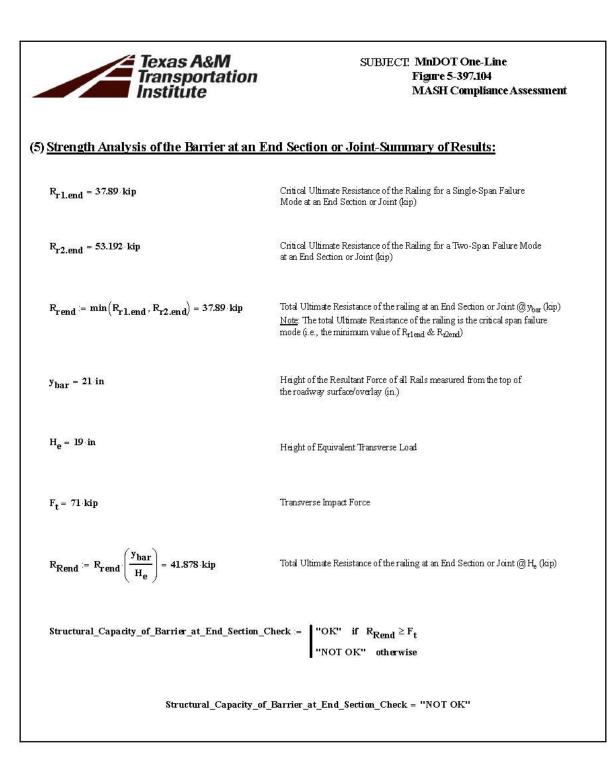

Texas A&M Transportation Institute	SUBJECT: MnDOT One-Line Figure 5-397,104 MASH Compliance Assessment
(3) <u>Geometric Criteria - Summary of Results:</u>	
Post_Setback_Criteria_Check := "OK" if Post_Setback "NOT OK" otherwise	:k_Criteria_Rail_Geometric_Point = Preferred e
Post_Setback_Criteria_Cl	neck = "NOT OK"
Snag_Potential_Criteria_Check := "OK" if Snag_Pot "NOT OK" otherwi	ential_Criteria_Rail_Geometric_Point = LowSnagPotential ise
Snag_Potential_Criteria_C	heck = "NOT OK"

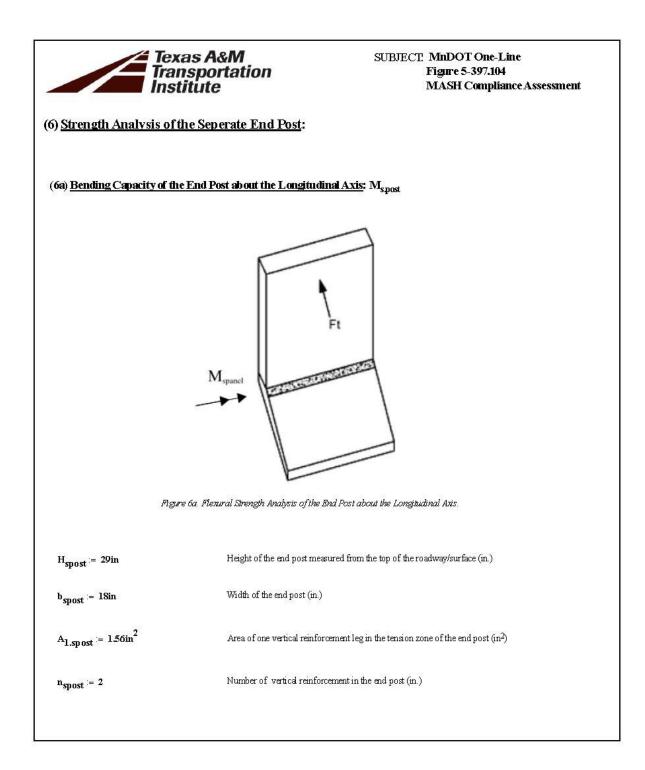
Texas A&M Transportation Institute	SUBJECT: MnDOT One-Line Figure 5-397.104 MASH Compliance Assessment
(4) <u>LRFD Strength Analysis of the Barrier p</u>	er AASHTO Section 13 Specifications:
(4a) <u>Flexural Capacity of the Concrete Rail:</u> M _{cr}	
$f_y = 40 \cdot ksi$	Yield Strength of Concrete Reinforcing Steel, (ksi)
$\mathbf{f}_{c} = 4 \cdot \mathbf{k} \mathbf{\dot{s}}$	Concrete Compressive Strength
$b_{cr} = 14 \text{ in}$	Width of the Concrete Rail (in.)
$A_{cr} = 1.76 \cdot in^2$	Total area of the reinforcement bars acting in tension in the Concrete Ral (in^2)
$\mathbf{d}_{\mathbf{cr}} = 7 \cdot \mathbf{in}$	Distance from the compression face of the Concrete Rail to the tension reinforcement bars (in.)
$a_{cr} := \frac{A_{cr} \cdot f_y}{0.85 f_c \cdot b_{cr}} = 1.479 \cdot in$	Whitney Stress Block Depth (in.)
$\mathbf{M}_{\mathbf{cr}} := \mathbf{A}_{\mathbf{cr}} \cdot \mathbf{f}_{\mathbf{y}} \cdot \left(\mathbf{d}_{\mathbf{cr}} - \frac{\mathbf{a}_{\mathbf{cr}}}{2} \right) = 36.728 \cdot \mathbf{kip} \cdot \mathbf{ft}$	Flexural Capacity of the Concrete Rail (kip-ft)
$y_{cr} = 21 \text{ in}$	Height of the Concrete Rail measured from the top of the roadway surface/overlay to the centroid of the rail (in.)
$y_{\text{bar}} = y_{\text{cr}} = 21 \cdot in$	Height of the Resultant Force of all Rails measured from the top of the roadway surface/overlay (in.) $\underline{Note}: y_{bar} = y_{cr}$, since the only rail is the concrete rail

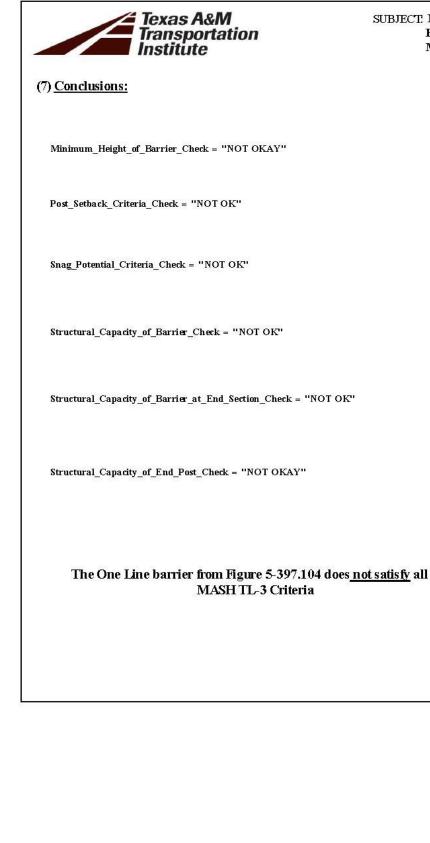

Texas A&M Transportation Institute	SUBJECT: MnDOT One-Line Figure 5-397.104 MASH Compliance Assessment
(4b) <u>Post Strength:</u> P _p	
$f_y = 40 \cdot ksi$	Yield Strength of Concrete Reinforcing Steel (ksi)
$\mathbf{f}_c = 4 \cdot \mathbf{k} \mathbf{s}$	Concrete Compressive Strength
$\mathbf{b_p} = 14 \cdot \mathbf{in}$	Width of Concrete Post (in.)
$A_p = 2.4 \cdot in^2$	Area of Concrete Post reinforcement acting in tension (in ²)
d _p = 8.5 in	Distance from the compression face of the Concrete Post to the tension reinforcement bars (in.)
$\mathbf{a}_{\mathbf{p}} := \frac{\mathbf{A}_{\mathbf{p}} \cdot \mathbf{f}_{\mathbf{y}}}{0.85 \cdot \mathbf{f}_{\mathbf{c}} \cdot \mathbf{b}_{\mathbf{p}}} = 2.017 \cdot \mathbf{i}\mathbf{n}$	Whitney Stress Block Depth (in.)
$M_{post} = A_p f_y \left(d_p - \frac{a_p}{2} \right) = 59.933 \text{ kip ft}$	Flexural Capacity of the Concrete Post (kip-ft)
y _{bar} = 21 in	Height of the Resultant Force of all Rails measured from the top of the roadway surface/overlay (in.)
h _{curb} = 0.in	Height of curb (in.)
$y_p := y_{bar} - h_{curb} = 21 \cdot in$	Height measured from the bottom of the Concrete Post to the Resultant Force of all Rails (in)
$P_p := \frac{M_{p \text{ ost}}}{y_p} = 34.247 \cdot kip$	Post Strength (kip)



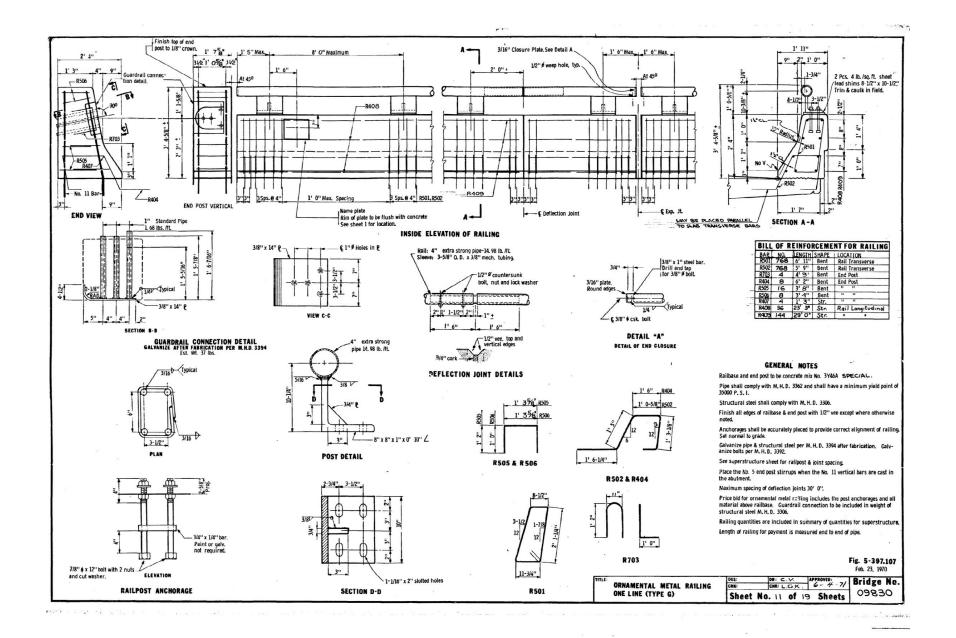


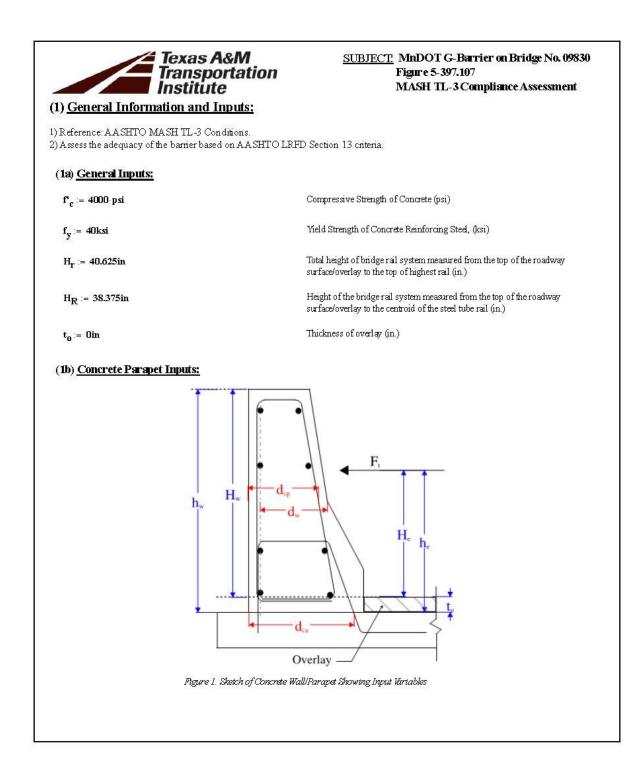



Texas A&M Transportation Institute	Figure 5-397.104 MASH Compliance Assessment	
(47) Ultimate Resistance (Nominal Resistance) of the Railing for a 4-8 Span Failure Mode: R_4 - R_8		
$P_p = 34.247 \cdot kip$ $L_p = 10.083 \text{ ft}$	$M_p = 36.728 \cdot kip \cdot ft$ $L_t = 4 ft$	
N ₄ := 4 N ₅ := 5 N ₆ := 6	N ₇ := 7 N ₈ := 8	
$R_{4} := \frac{16 \cdot M_{p} + N_{4}^{2} \cdot P_{p} \cdot L_{p}}{2 \cdot N_{4} \cdot L_{p} - L_{t}} = 79.733 \cdot kip$	Ultimate Resistance of the Railing for a Four-Span Failure Mode (kip) - Eqn. A13.3.2-2	
$R_{5} := \frac{16 \cdot M_{p} + (N_{5} - 1) \cdot (N_{5} + 1) \cdot P_{p} \cdot L_{p}}{2 \cdot N_{5} \cdot L_{p} - L_{t}} = 91.657 \cdot kip$	Ultimate Resistance of the Railing for a Five-Span Failure Mode (kip) - Eqn. A13.3.2-1	
$R_{6} := \frac{16 \cdot M_{p} + N_{6}^{2} \cdot P_{p} \cdot L_{p}}{2 \cdot N_{6} \cdot L_{p} - L_{t}} = 111.277 \cdot kip$	Ultimate Resistance of the Railing for a Six-Span Failure Mode (kip) - Eqn. A13.3.2-2	
$\mathbf{R}_{7} := \frac{16 \cdot \mathbf{M}_{p} + (\mathbf{N}_{7} - 1) \cdot (\mathbf{N}_{7} + 1) \cdot \mathbf{P}_{p} \cdot \mathbf{L}_{p}}{2 \cdot \mathbf{N}_{7} \cdot \mathbf{L}_{p} - \mathbf{L}_{t}} = 125.128 \cdot \mathbf{kip}$	Ultimate Resistance of the Railing for a Seven-Span Failure Mode (kip) - Eqn. A13.3.2-1	
$\mathbf{R}_{\mathbf{S}} := \frac{16 \cdot \mathbf{M}_{\mathbf{p}} + \mathbf{N}_{\mathbf{S}}^{2} \cdot \mathbf{P}_{\mathbf{p}} \cdot \mathbf{L}_{\mathbf{p}}}{2 \cdot \mathbf{N}_{\mathbf{S}} \cdot \mathbf{L}_{\mathbf{p}} - \mathbf{L}_{\mathbf{t}}} = 144.207 \cdot \mathbf{kip}$	Ultimate Resistance of the Railing for a Eight-Span Failure Mode (kip) - Eqn. A13.3.2-2	



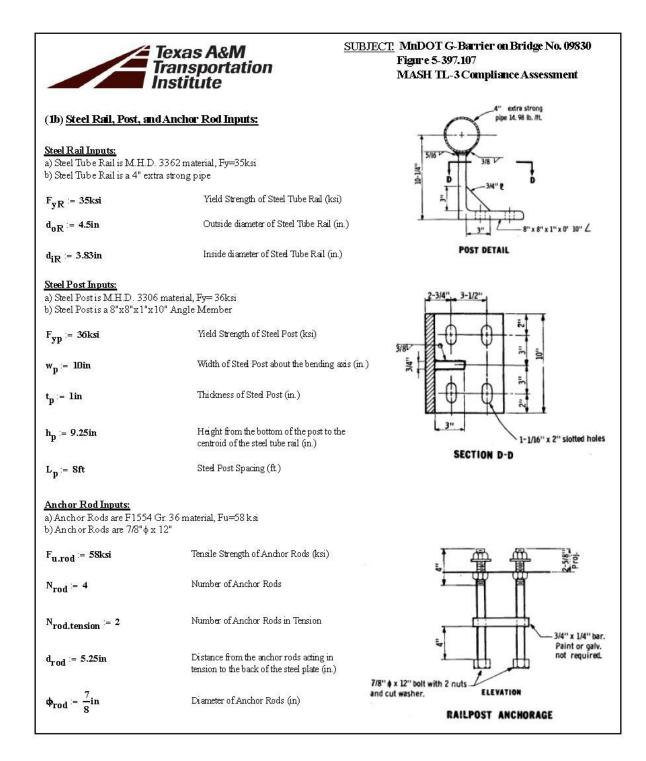
Texas A&M Transportation Institute SUBJECT: MnDOT One-Line Figure 5-397.104 **MASH Compliance Assessment** (5a-conti.) Bending Capacity of the End Post about the Longitudinal Axis: M_{spost} $A_{spost} = n_{spost} A_{1.spost} = 3.12 in^2$ Total Area of vertical reinforment in the tension zone of the end post (in²) $a_{spost} := \frac{A_{spost} \cdot f_y}{0.85 \cdot f_c \cdot b_{spost}} = 2.039 \cdot in$ Depth of the Whitney Stress Block (in.) d_{spost} := 11.5in Average extreme distance of tension vertical reinforcement in the end post (in.) $\mathbf{M}_{s,post} := \mathbf{A}_{spost} \cdot \mathbf{f}_{y} \cdot \left(\mathbf{d}_{spost} - \frac{\mathbf{a}_{spost}}{2} \right) = 108.996 \cdot \mathbf{kip} \cdot \mathbf{ft}$ Flexural Capacity of the End Post about the Longitudinal Axis when considering only the vertical reinforcment (kip-ft)


Texas A&M Transportation Institute	SUBJECT: MnDOT One-Line Figure 5-397.104 MASH Compliance Assessment
(6) <u>Strength Analysis of the End Post-Summary</u>	<u>of Results</u> :
H _e = 19 in	Height of the Transverse Impact Force, $F_{t}(\mathbf{i}\mathbf{n}.)$
$F_t = 71 \cdot kip$	Transverse Impact Force located at $\rm H_{e}$ (kip)
M _{s.p.ost} = 108.996 kip ft	Flexural Resistance of the End Post about the Longitudinal Axis when considering the critical reinforcment (k-fb/ft)
R _{spost} := $\frac{M_{s.post}}{H_e}$ = 68.84 kip	Structural Capacity of the End Post
Structural_Capacity_of_End_Post_Check := ("OK" if "NOT OKA	R _{spost} ≥F _t AY'' otherwise)
Structural_Capacity_of_End_Post	t_Check = "NOT OKAY"



SUBJECT: MnDOT One-Line Figure 5-397.104 MASH Compliance Assessment

APPENDIX D: G BARRIER ANALYSES


APPENDIX D1: G BARRIER ON BRIDGE NO. 09830 (FIGURE 5-397.107)

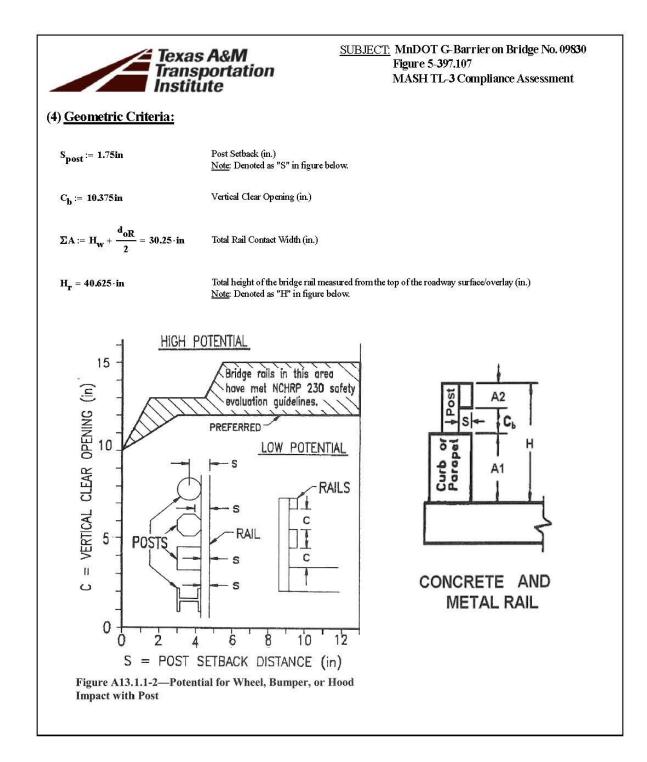
Texas A&MSUBJECT:MnDOT G-Barrier on Bridge No. 0983TransportationFigure 5-397.107InstituteMASH TL-3 Compliance Assessment	10
'ar ap et Inputs:	
Height of the concrete parapet/wall measured from the top of the roadway surface/overlay (in.)	
Total height of the concrete parapet/wall (in.)	
cement Inputs:	
Area of one parapet vertical reinforcement leg in the tension zone at midspan (in2)	
Average Spacing of parapet vertical reinforcement at midspan (in.)	
Extreme distance of parapet vertical reinforcement in tension at midspan (in.)	
Area of one parapet vertical reinforcement leg in the tension zone at joints/ends (in $\!\!\!\!\!\!2)$	
Average Spacing of parapet vertical reinforcement at joints/ends (in.)	
Extreme distance of tension parapet vertical reinforcement at joints/ends (in.)	
ient Inputs:	
Area of longitudinal reinforcement bars in tension (in ²)	
Extreme distance of tension longitudinal reinforcement of wall (in.)	
	MASH TL-3 Compliance Assessment Mask TL-3 Compliance Assessment Average Spacing of parapet vertical

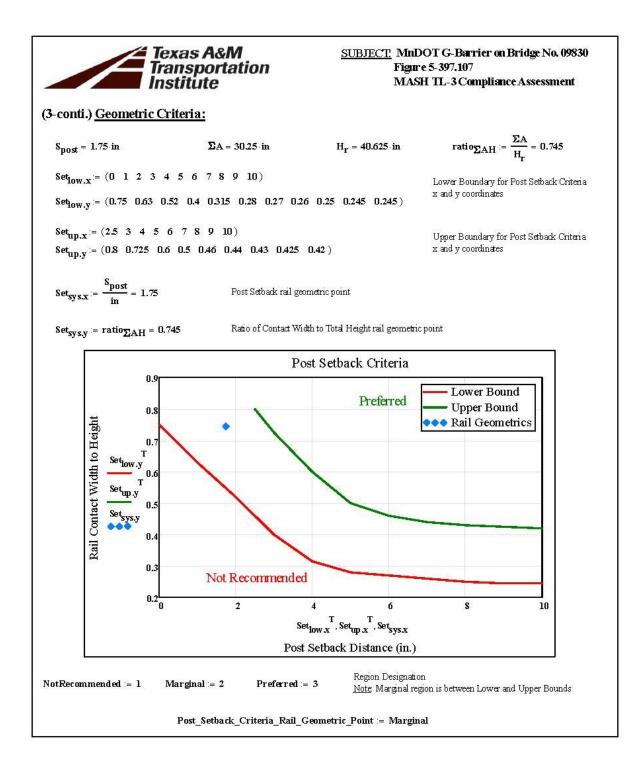
Texas As Transpor Institute	SUBJECT: MnDOT G-Barrier on Bridge No. 09830 tation Figure 5-397.107 MASH TL-3 Compliance Assessment	
(1b-conti.) <u>Concrete Parapet Inputs</u>		
DeckAnchorage Vertical Reinforcemen	<u>it Inputs:</u>	
L _{proj_R502} := 10in	Projected length of R502E reinforcement over the slab (in.)	
L _{wid_R502} = 12.625in	Outer width of R502E reinforcement (in.)	
Cover := 2in	Cover clear distance (in.)	
$Ratio_{R502} := \frac{6}{12}$	Inclined angle of R502E reinforcement	
^d b_R502 ^{:=} 0.625in	Nominal diameter of R502E reinforcement (#5 bar)	
Coping := 2in	Coping on the back of the barrier	
$d_{ca} = L_{wid} = 502 + L_{proj} = 502$	$tio_{R502} + Cover - \frac{1}{2}d_{b_{R502}} - Coping = 17.313$ in	
	Extreme distance of tension deck anchorage vertical reinforcement (in,)	
$A_{val.mid} = 0.31in^2$	Area of one deck anchorage vertical reinforcement leg in the tension zone at midspan (in^2)	
s _{va.mid} = 12in	Average Spacing of deck anchorage vertical reinforcement at midspan (in.)	
$\mathbf{d}_{\mathbf{ca.mid}} \coloneqq \mathbf{d}_{\mathbf{ca}} = 17.313 \cdot \mathbf{in}$	Extreme distance of tension deck anchorage vertical reinforcement of the wall at midspan(in.)	
$A_{val.end} = 0.31in^2$	Area of one deck anchorage vertical reinforcement leg in the tension zone at joints/ends (in^2)	
s _{va.end} := 9.6in	Average Spacing of deck anchorage vertical reinforcement at joints/ends (in)	
$\mathbf{d_{ca.end}} \coloneqq \mathbf{d_{ca}} = 17.313$ in	Extreme distance of tension deck anchorage vertical reinforcement at joints/ends (in.)	

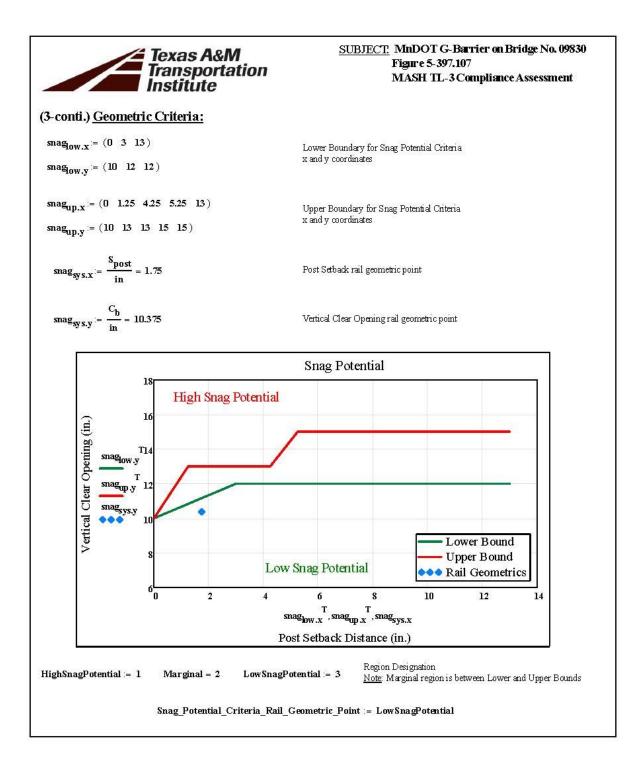
(1c) Design Force Inputs:

Test Level	Rail Height (in.)	Ft (kip)	F _L (kip)	F _v (kip)	L _t /L _L (ft)	L _v (ft)	H _e (in)	H _{min} (in)
TL-1	18 or above	13.5	4.5	4.5	4.0	18.0	18.0	18.0
TL-2	18 or above	27.0	9.0	4.5	4.0	18.0	20.0	18.0
TL-3	29 or above	71.0	18.0	4.5	4.0	18.0	19.0	29.0
TL-4 (a)	36	68.0	22.0	38.0	4.0	18.0	25.0	36.0
TL-4 (b)	between 36 and 42	80.0	27.0	22.0	5.0	18.0	30.0	36.0
TL-5 (a)	42	160.0	41.0	80.0	10.0	40.0	35.0	42.0
TL-5 (b)	greater than 42	262.0	75.0	160.0	10.0	40.0	43.0	42.0
TL 6		175.0	58.0	80.0	8.0	40.0	56.0	90.0

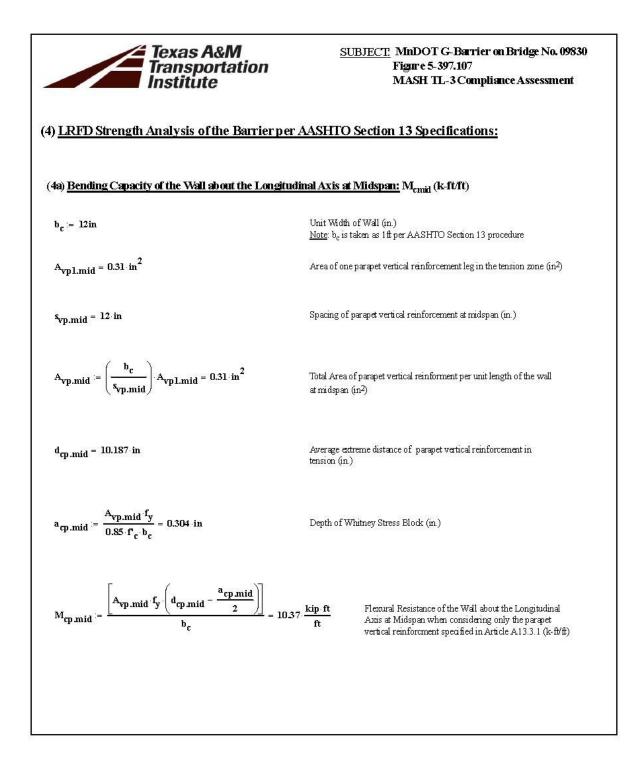
Design Forces for Traffic Railings

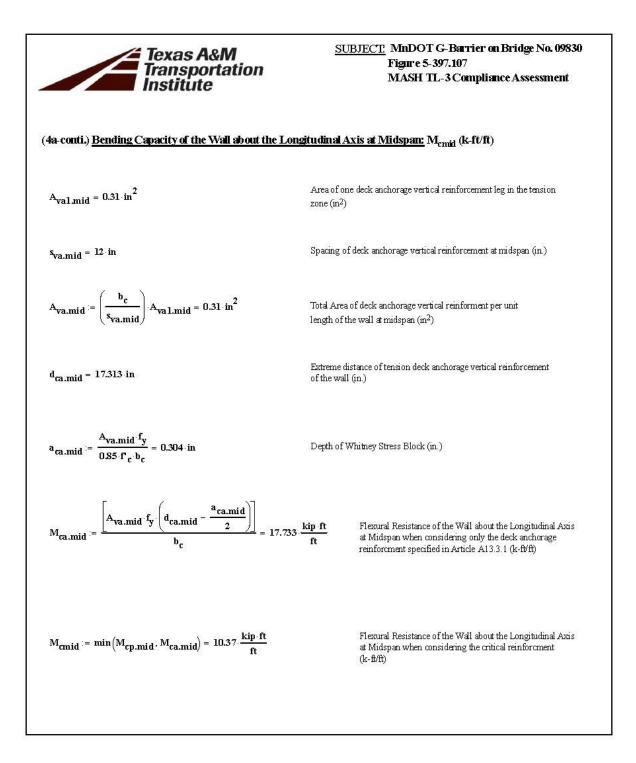

<u>References:</u>

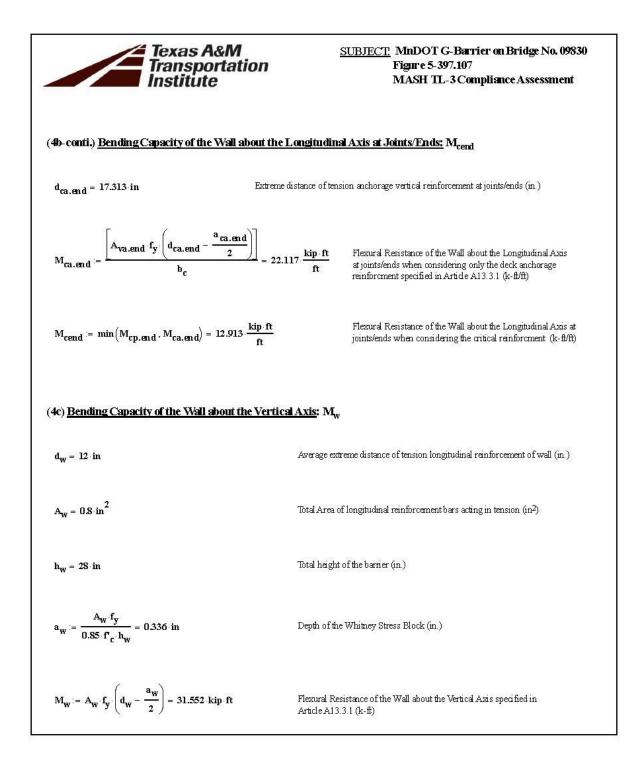

- TL-1 and TL-2 Design Forces are from AASHTO LRFD Section 13 Table A13.2-1
 TL-3 Design Forces are from research conducted under NCHRP Project 20-07 Task 395

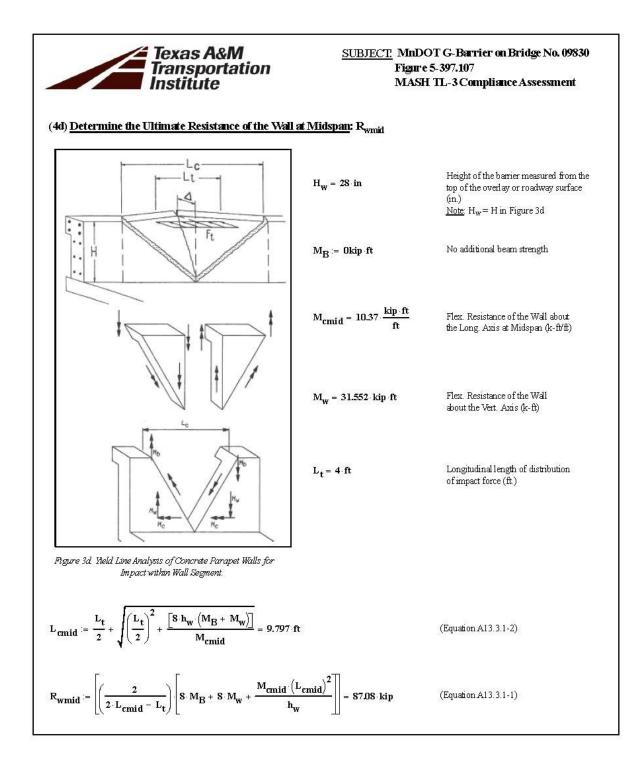

TL-4 (a), TL-4 (b), TL-5 (a), and TL-5 (b) Design Forces are from research conducted under
NCHRP Project 22-20(2)

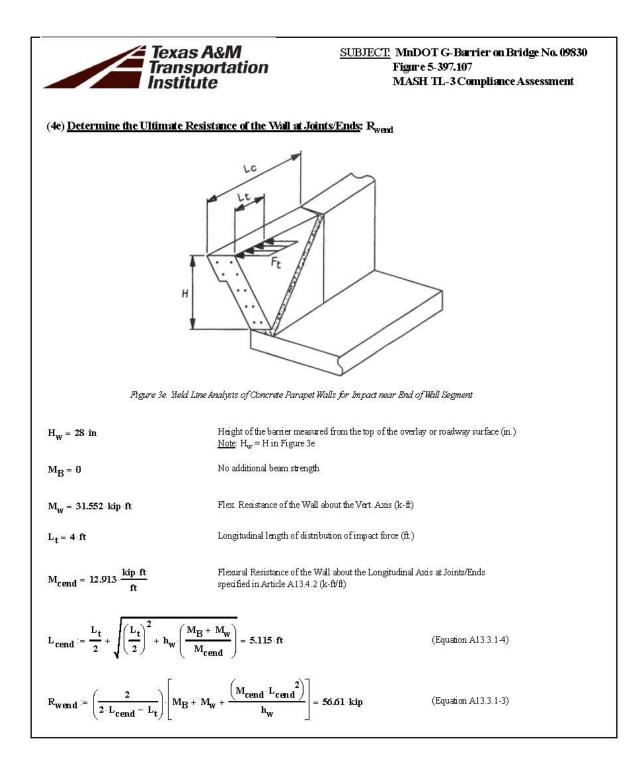
TL := 3	Test Level
F _t := 71kip	Transverse Impact Force
$L_t := 4ft$	Longitudinal Length of Distribution of Impact Force
H _e = 19in	Height of Equivalent Transverse Load
H _{min} := 29in	Minimum height of a MASH TL-3 barrier (in.)
$H_{r} = 40.625 in$	Total height of bridge rail system measured from the top of the roadway surface/overlay to the top of highest rail (in.)


Texas A&M Transportation Institute	<u>SUBJECT</u> MnDOT G-Barrier on Bridge No. 09830 Figure 5-397.107 MASH TL-3 Compliance Assessment
(2) <u>Stability Criteria:</u>	
H _{min} = 29 · in Minimum height of a MASHTL	-3 barrier (m.)
H _r = 40.625 in Total height of bridge rail system highest rail (in.)	measured from the top of the roadway surface/overlay to the top of
Minimum_Height_of_Barrier_Check := "OK" if H _r ≥ "NOT OK" ot	H _{min} herwise
Minimum_Height_of_Barrier_C	heck = "OK"

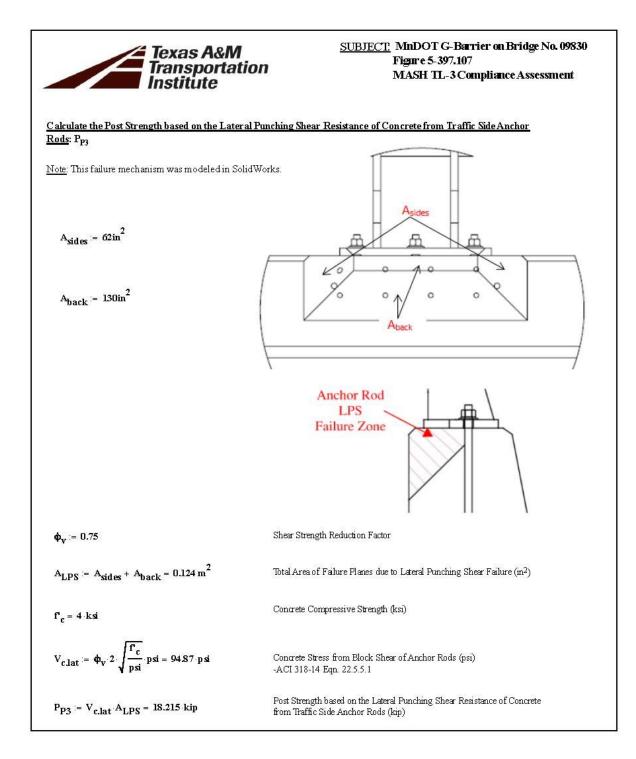


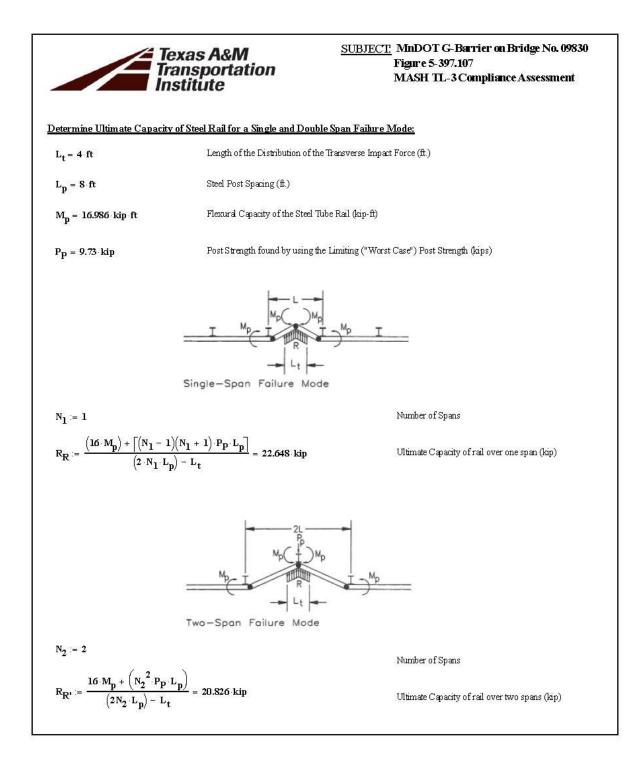


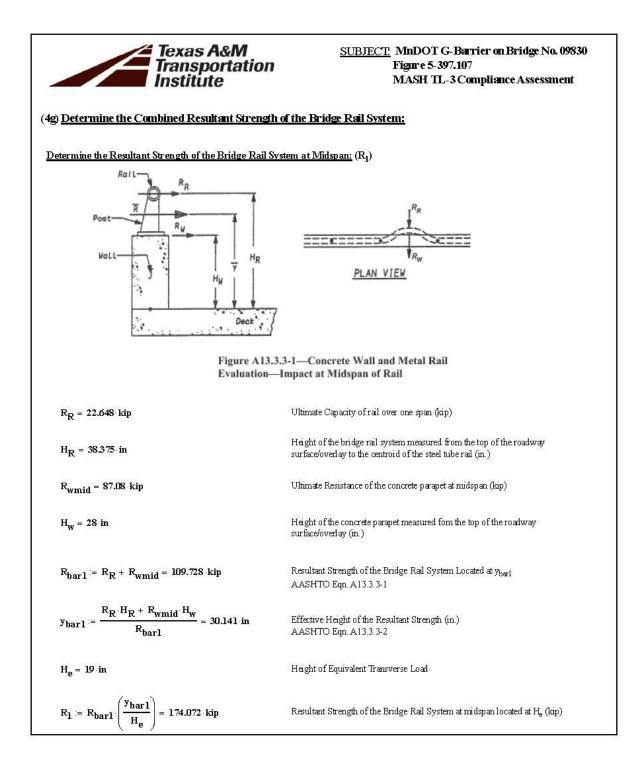

Texas A&M Transportation Institute	<u>SUBJECT</u> MnDOT G-Barrier on Bridge No. 09830 Figure 5-397.107 MASH TL-3 Compliance Assessment
(3) <u>Geometric Criteria - Summary of Results:</u>	
Post_Setback_Criteria_Check := "OK" if Post_Setback_C "NOT OK" otherwise	riteria_Rail_Geometric_Point = Preferred
Post_Setback_Criteria_Check	= "NOT OK"
Snag_Potential_Criteria_Check := "OK" if Snag_Potentia "NOT OK" otherwise	l_Criteria_Rail_Geometric_Point = LowSnagPotential
Snag_Potential_Criteria_Check	= "OK"

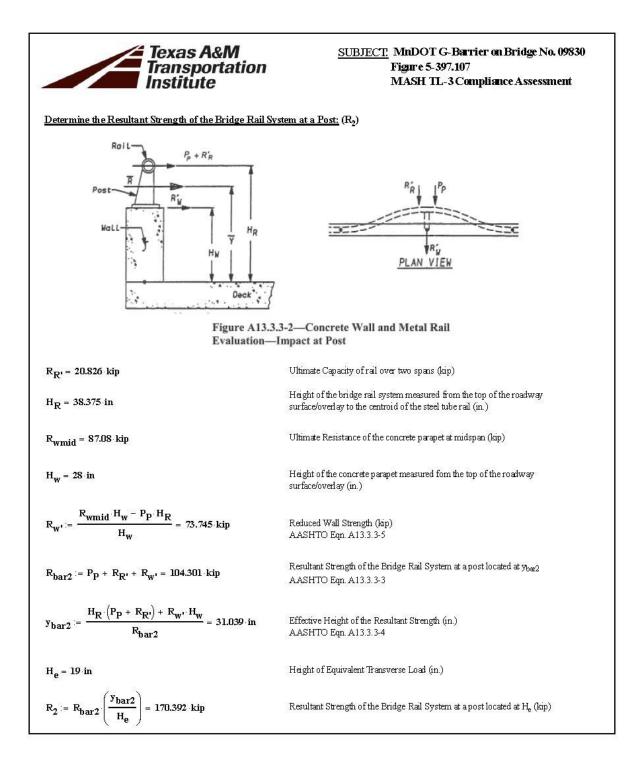


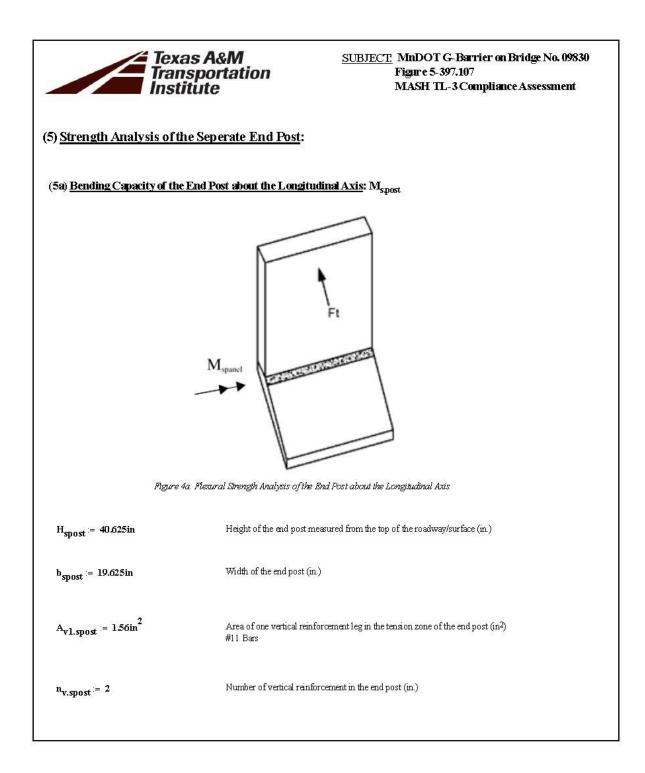
Texas A&M Transportati Institute	SUBJECT: MnDOT G-Barrier on Bridge No. 09830 Figure 5-397.107 MASH TL-3 Compliance Assessment
(4b) <u>Bending Capacity of the Wall about th</u>	ne Longitudinal Axis at Joints/Ends. M _{cend}
$b_c = 12 \cdot in$	Unit Width of Wall (in.)
$A_{vpl.end} = 0.31 \text{ in}^2$	Area of one parapet vertical reinforcement leg in the tension zone at joints/ends (in 2)
s _{vp.end} = 9.6 in	Spacing of parapet vertical reinforcement at joints/ends (in.)
$A_{vp.end} := \left(\frac{b_c}{s_{vp.end}}\right) \cdot A_{vp1.end} = 0.388 \cdot in^2$	Total Area of parapet vertical reinforment per unit length of the wall at joints/ends (in ²)
$a_{cp.end} = \frac{A_{vp.end} f_y}{0.85 f_c b_c} = 0.38 in$	Depth of Whitney Stress Block (in.)
d _{cp.end} = 10.187 in	Average extreme distance of tension parapet vertical reinforcement at joints/ends (in.)
$M_{cp.end} := \frac{\left[A_{vp.end} f_{y} \cdot \left(d_{cp.end} - \frac{a_{cp.end}}{2}\right)\right]}{b_{c}}$	<u>d</u> = 12.913 kip ft ft Flexural Resistance of the Wall about the Longitudinal Axis at Joints/Ends when considering only the parapet vertical reinforcment specified in Article A13.3.1 (k-ft/ft)
$A_{val.end} = 0.31 \cdot in^2$	Area of one deck anchorage vertical reinforcement leg in the tension zone at joints/ends (in ²)
s _{va.end} = 9.6 in	Spacing of deck anchorage vertical reinforcement at joints/ends (in.)
$A_{va.end} := \left(\frac{b_c}{s_{va.end}}\right) A_{val.end} = 0.388 in^2$	Total Area of deck anchorage vertical reinforment per unit length of the wall at joints/ends (in^2)
$a_{ca.end} := \frac{A_{va.end} \cdot f_y}{0.85 \cdot f_c \cdot b_c} = 0.38 \cdot in$	Depth of Whitney Stress Block (in.)

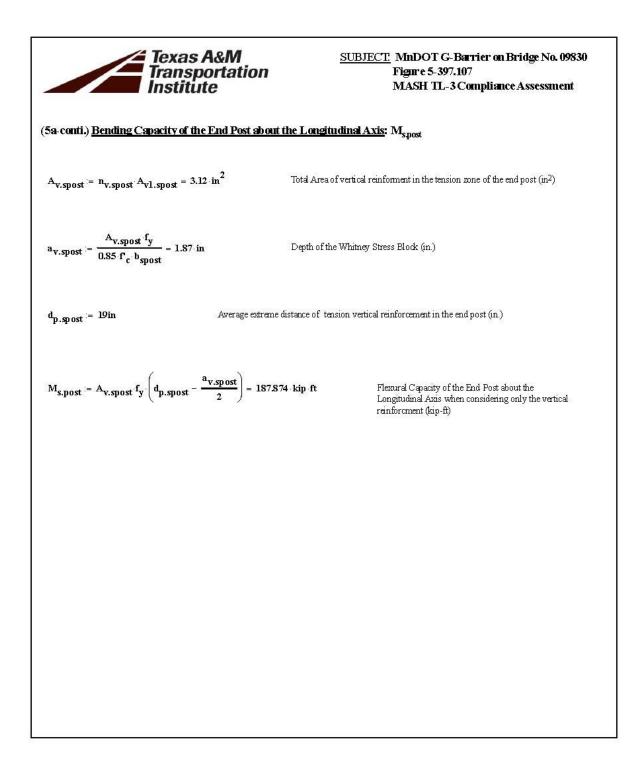





Texas A&M Transportation Institute	<u>SUBJECT</u> MnDOT G-Barrier on Bridge No. 09830 Figure 5-397.107 MASH TL-3 Compliance Assessment
(4f) <u>Steel Rail & Post Strength Analysis:</u>	
F _{yR} = 35 ksi	Vield Strength of Steel Tube Rail (ksi)
d _{0R} = 4.5 in	Outside diameter of Steel Tube Rail (in.)
$d_{iR} = 3.83 \cdot in$	Inside diameter of Steel Tube Rail (in.)
$Z_{R} := \frac{\left(d_{0R}^{3} - d_{1R}^{3}\right)}{6} = 5.824 \cdot in^{3}$	Plastic Sectional Modulus of the Steel Tube Rail (in ³)
$M_p := F_{yR} Z_R = 16.986 kip ft$	Plastic Moment Capacity of the Steel Tube Rail (kip-ft)
<u>Calculate the Plastic Strength of the Post</u> , P _{Pl}	
$w_p = 10$ in	Width of Steel Post about the bending axis (in.)
$\mathbf{t_p} = 1 \cdot \mathbf{in}$	Thickness of Steel Post (in.)
$Z_{\rm p} := \frac{{\rm w}_{\rm p} {\rm t}_{\rm p}^2}{4} = 2.5 \cdot {\rm in}^3$	Plastic Sectional Modulus of the Steel Post about the bending axis (in.)
F _{yp} = 36 ksi	Yield Strength of Steel Post (ksi)
$M_{post} = F_{yp} \cdot Z_p = 7.5 \cdot kip \cdot ft$	Plastic Moment Capacity of the Steel Post (kip-ft)
$h_p = 9.25 \cdot in$	Height from the bottom of the post to the centroid of the steel tube rail (in.)
$P_{p_1} := \frac{M_{post}}{h_p} = 9.73 \cdot kip$	Post Strength based on the Plastic Failure of a Steel Post (kip)


Texas A&M Transportation Institute	<u>SUBJECT</u> MnDOT G-Barrier on Bridge No. 09830 Figure 5-397.107 MASH TL-3 Compliance Assessment
<u>Calculate the Post Strength based on the Ultimate Stren</u>	ngth of the Anchor Rods: P _{P2}
$F_{u,rod} = 58 ksi$	Tensile Strength of the Anchor Rods (ksi)
$\phi_{rod} = 0.875$ in	Diameter of Anchor Rods (in)
$A_{rod} := \frac{\pi}{4} \cdot \phi_{rod}^2 = 0.601 \cdot in^2$	Area of a Anchor Rod (in^2)
$R_{nt} := F_{u,rod} \left(0.75 \cdot A_{rod} \right) = 26.157 \text{ kip}$	Nominal strength of one Anchor Rod in Tension (kip)
$N_{rod.tension} = 2$	Number of Anchor Rods acting in tension
d _{rod} = 5.25 in	Distance from the anchor rods acting in tension to the back of the steel plate (in.)
d _b := 1.5in	Length of the steel plate bearing pressure acting on the concrete parapet $(in.)$
$w_{rod} := d_{rod} - \frac{d_b}{3} = 4.75 \text{ in}$	Distance from anchor rods acting in tension to the centroid of the bearing pressure acting on the concrete parapet (in.)
M _{trod} = w _{rod} R _{nt} N _{rod.tension} = 20.708 kip ft	Moment strength of Post based on tensile capacity of Anchor Rods (k-ff)
$h_p = 9.25 \cdot in$	Height from the bottom of the post to the centroid of the steel tube rail (in.)
$P_{t.rod} := \frac{M_{t.rod}}{h_p} = 26.864 \text{ kip}$	Post Strength based on the tensile capacity of Anchor Rods (kip)
$R_{nv} := F_{u.rod} \cdot (0.45 \cdot A_{rod}) = 15.694 \cdot kip$	Nominal strength of one anchor rod in Shear w/h threads in shear plane (kip)
$P_{v,rod} := N_{rod} \cdot R_{nv} = 62.778 \cdot kip$	Post Strength based on the shear capacity of Anchor Rods (kip)
$P_{p_2} := min(P_{t,rod}, P_{v,rod}) = 26.864 \cdot kip$	Post Strength based on the Ultimate Strength of the Anchor Rods (kip)


Texas A&M Transportation Institute	<u>SUBJECT</u> MnDOT G-Barrier on Bridge No. 09830 Figure 5-397.107 MASH TL-3 Compliance Assessment
Determine the Limiting ("Worst Case ") Post Strength	<u>ı (kips):</u> P _p
P _{P1} = 9.73 kip	Post Strength based on the Plastic Failure of a Steel Post (kip)
P _{P2} = 26.864 kip	Post Strength based on the Ultimate Strength of the Anchor Rods (kip)
P _{P3} = 18.215 kip	Post Strength based on the Lateral Punching Shear Resistance of Concrete from Traffic Side Anchor Rods (kip)
$\mathbf{P_{P}} := \min \left(\mathbf{P_{P1}}, \mathbf{P_{P2}}, \mathbf{P_{P3}} \right) = 9.73 \cdot kip$	Post Strength found by using the Limiting ("Worst Case") Post Strength (kips)



Texas A&M Transportation Institute	<u>SUBJECT</u> MnDOT G-Barrier on Bridge No. 09830 Figure 5-397.107 MASH TL-3 Compliance Assessment
(4) LRFD Strength Analysis of the Barrier per AASHTO Section 13 Specifications - Summary of Results:	
F _t = 71 kip	Transverse Impact Force located at H _e (kip)
R ₁ = 174.072 ·kip	Resultant Strength of the Bridge Rail System at midspan located at $\mathbf{H}_{\mathbf{e}}\left(\mathbf{kip}\right)$
Structural_Capacity_of_Barrier_at_Midspan_Check := "OK" if $R_1 \ge F_t$ "NOT OK" otherwise	
Structural_Capacity_of_Barrier_at_Midspan_Check = "OK"	
R ₂ = 170.392 kip	Resultant Strength of the Bridge Rail System at a post located at $\mathbf{H}_{\!\mathbf{e}}\left(\mathbf{kip}\right)$
Structural Canadity of Barrier at a Post Check $= 1^{11}$ OK ¹¹ if R ₂ > F.	
Structural_Capacity_of_Barrier_at_a_Post_Check :	
Structural_Capacity_of_Barrier_at_a_Post_Check = "OK"	

$$Product Product Prod$$

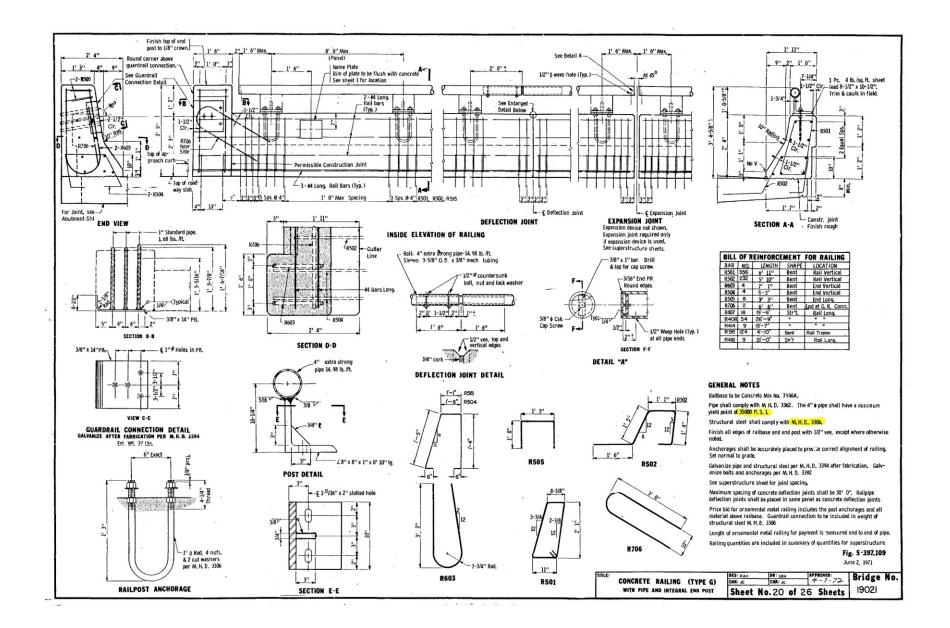
<u>SUBJECT</u> MnDOT G-Barrier on Bridge No. 09830 Figure 5-397.107 MASH TL-3 Compliance Assessment

(6) Conclusions:

Minimum_Height_of_Barrier_Check = "OK"

Post_Setback_Criteria_Check = "NOT OK"

Snag_Potential_Criteria_Check = "OK"


Structural_Capacity_of_Barrier_at_Midspan_Check = "OK"

Structural_Capacity_of_Barrier_at_a_Post_Check = "OK"

Structural_Capacity_of_End_Post_Check_Against_Ftr = "OK"

Structural_Capacity_of_End_Post_Check_Against_Ft = "OK"

The G-Barrier on Bridge No. 09830 (Fig. 5-397.107) has <u>not satisfied</u> all MASH TL-3 Criteria APPENDIX D2: G BARRIER ON BRIDGE NO. 19021 (FIGURE 5-397.109)

<u>SUBJECT</u> MnDOT G-Barrier on Bridge No. 19021 Figure 5-397.109 MASH TL-3 Compliance Assessment

(1) General Information and Inputs:

1) Reference: A A SHTO MA SH TL-3 Conditions.

2) Assess the adequacy of the barrier based on AASHTO LRFD Section 13 criteria.

(1a) General Inputs:

 $\mathbf{f}_{c} := 4000 \text{ psi}$

 $f_v := 60ksi$

 $H_r := 40.625 in$

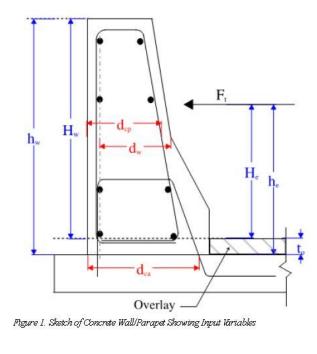
H_R := 38.375in

t_o := 0in

Thickness of overlay (in.)

Compressive Strength of Concrete (psi)

Yield Strength of Concrete Reinforcing Steel, (ksi)


surface/overlay to the centroid of the steel tube rail (in.)

surface/overlay to the top of highest rail (in.)

Total height of bridge rail system measured from the top of the roadway

Height of the bridge rail system measured from the top of the roadway

(1b) Concrete Parapet Inputs:

Texas Ad Transpor Institute	&M rtation	<u>SUBJECT.</u> MnDOT G-Barrier on Bridge No. 19021 Figure 5-397.109 MASH TL-3 Compliance Assessment
(1b-conti.) <u>Concrete Parapet Input</u>	<u>s:</u>	
H _w := 28in	Height of the concrete parag surface/overlay (in.)	et/wall measured from the top of the roadway
$h_w := H_w + t_0 = 28 \cdot in$	Total height of the concrete	parapet/wall (in.)
Parapet Vertical Reinforcement Inputs		
$A_{vpl.mid} = 0.31in^2$	Area of one parapet vertical	reinforcement leg in the tension zone at midspan (in ²)
s _{vp.mid} = 12in	Average Spacing of parapet	vertical reinforcement at midspan (in.)
d _{cp.mid} := 10.1875 in	Extreme distance of parape	vertical reinforcement in tension at midspan (in.)
$A_{vpl.end} = 0.31in^2$	Area of one parapet vertical	reinforcement leg in the tension zone at joints/ends (in 2)
$s_{vp.end} = 4in$	Average Spacing of parapet	vertical reinforcement at joints/ends (in.)
d _{cp.end} := 10.1875 in	Extreme distance of tension	parapet vertical reinforcement at joints/ends (in.)
Longitudinal Reinforcement Inputs:		
$A_w = 0.8in^2$	Area of longitudinal reinfo	rcement bars in tension (in ²)
d _w = 9.625in	Extreme distance of tension	longitudinal reinforcement of wall (in.)

Texas A Transpor Institute	SUBJECT. MnDOT G-Barrier on Bridge No. 19021 rtation Figure 5-397.109 MASH TL-3 Compliance Assessment	
(1b-conti.) <u>Concrete Parapet Input</u>	<u>is:</u>	
DeckAnchorage Vertical Reinforceme	nt Inputs:	
L _{proj_R502} := 10in	Projected length of R502 reinforcement over the slab (in.)	
L _{wid_R502} := 13in	Outer width of R502 reinforcement (m.)	
Cover := 2in	Cover clear distance (in.)	
$Ratio_{R502} := \frac{6}{12}$	Inclined angle of R502E reinforcement	
^d b_R502 := 0.625in	Nominal diameter of R502Ereinforcement (#5 bar)	
Coping = 2in	Coping on the back of the barrier	
$\mathbf{d_{ca}} = \mathbf{L_{wid}}_{R502} + \mathbf{L_{proj}}_{R502} \cdot \mathbf{Ratio}_{R502} + \mathbf{Cover} - \frac{1}{2} \mathbf{d_{b}}_{R502} - \mathbf{Coping} = 17.688 \cdot \mathbf{in}$		
	Extreme distance of tension deck anchorage vertical reinforcement (in,)	
$A_{val.mid} = 0.31in^2$	Area of one deck anchorage vertical reinforcement leg in the tension zone at midspan (in^2)	
s _{va.mid} = 12in	Average Spacing of deck anchorage vertical reinforcement at midspan (in.)	
$d_{ca.mid} = d_{ca} = 17.688$ in	Extreme distance of tension deck anchorage vertical reinforcement of the wall at midspan(in.)	
$A_{val.end} = 0.31in^2$	Area of one deck anchorage vertical reinforcement leg in the tension zone at joints/ends (n^2)	
s _{va.end} := 4in	Average Spacing of deck anchorage vertical reinforcement at joints/ends (in) $% \left(\frac{1}{2} \right) = 0$	
$\mathbf{d_{ca.end}} \coloneqq \mathbf{d_{ca}} = 17.688 \text{ in}$	Extreme distance of tension deck anchorage vertical reinforcement at joints/ends (in.)	

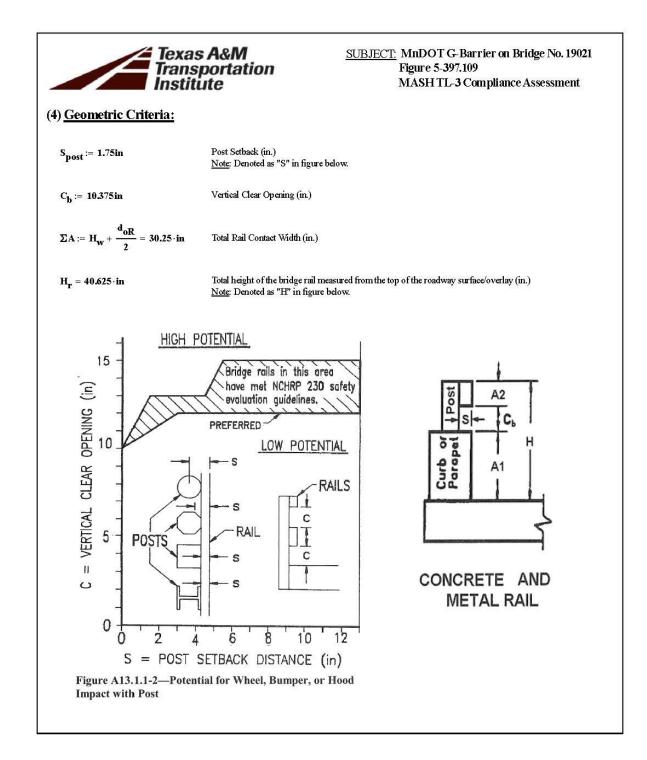
	Texas A&M <u>SUBJE</u> Transportation Institute	<u>CCF</u> MnDOT G-B a rrier on Bridge No. 19021 Figure 5-397.109 MASH TL-3 Compliance Assessment
(1b) <u>Steel Rail, Post, a</u>	nd Anchor Rod Inputs:	4" extra strong pipe 14. 98 lb. /ft.
Steel Rail Inputs:		5/16
). 3362 material, Fy=35ksi atra strong pipe	3/8 V - 3/8 V - D
F _{yR} = 35ksi	Yield Strength of Steel Tube Rail (ksi)	
d _{0R} := 4.5in	Outside diameter of Steel Tube Rail (in.)	
d _{iR} := 3.83in	Inside diameter of Steel Tube Rail (in.)	POST DETAIL
Steel Post Inputs: a) Steel Post is M.H.D. 33(b) Steel Post is a 8"x8"x1"; F _{yp} := 36ksi		3"
w _p = 10in	Width of Steel Post about the bending axis $\left(in.\right)$	
t _p := 1in	Thickness of Steel Post (in.)	
h _p = 10.25in	Height from the bottom of the post to the centroid of the steel tube rail (in.)	
$L_p = 8.5ft$	Steel Post Spacing (ft.)	SECTION E-E
<mark>Anchor Rod Inputs:</mark> a) Anchor Rods are F1554	Gr. 36 material, Fu=58 ksi	6"Exact
b) An ch or Rods are 1"φ x		8/F
F _{u.rod} := 58ksi	Tensile Strength of Anchor Rods (ksi)	
N _{rod} := 1	Number of Anchor Rods	
	Number of Anchor Rods in Tension	-
Nrod.tension := 2	Number of Anchor Rods in Tension	
N _{rod.tension} := 2 d _{rod} := 5in	Distance from the anchor rods acting in tension to the back of the steel plate (in.)	-1" 0 Rod, 4 nut & 2 cut washers per M, H. D. 330

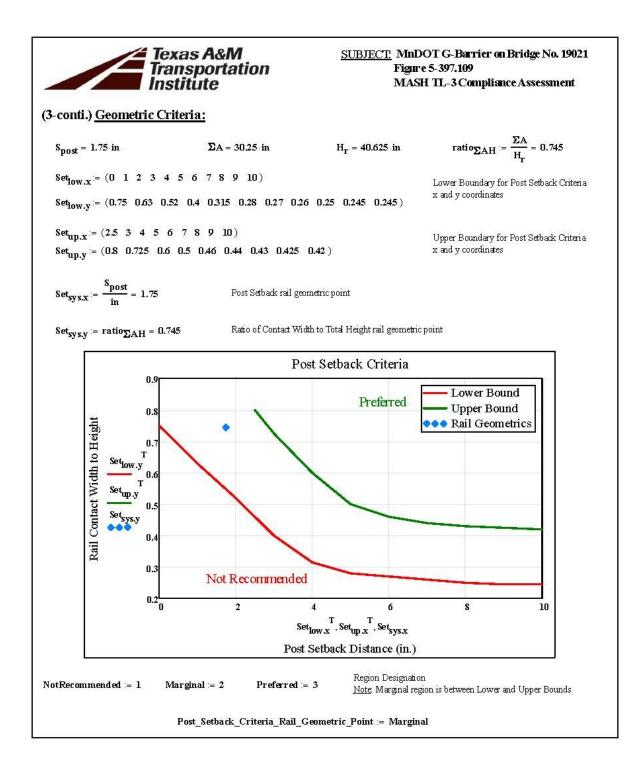
SUBJECT: MnDOT G-Barrier on Bridge No. 19021 Figure 5-397.109 MASH TL-3 Compliance Assessment

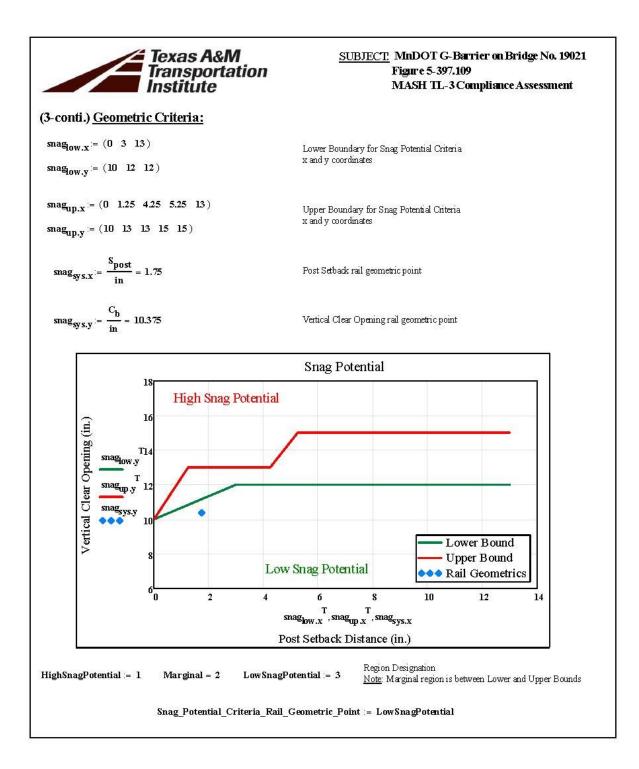
(1c) Design Force Inputs:

Design Forces for Traffic Railings

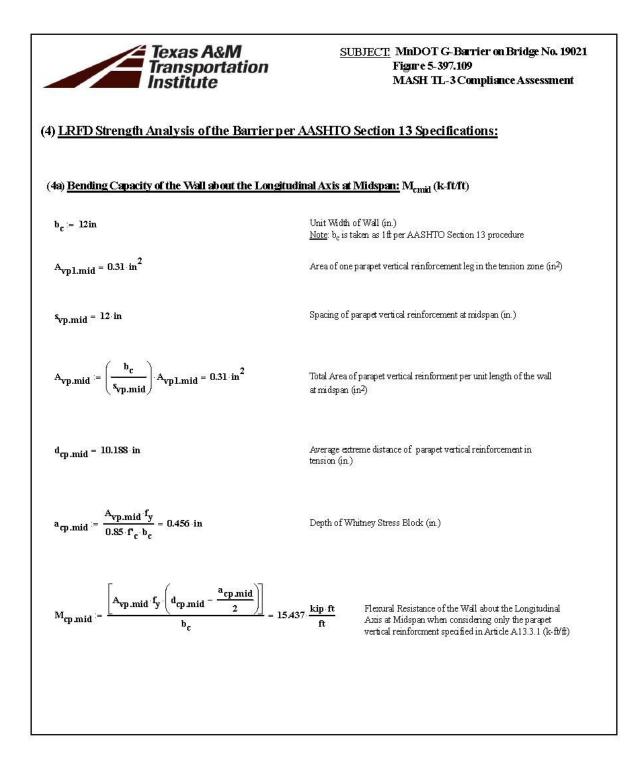
Test Level	Rail Height (in.)	Ft (kip)	F _L (kip)	F _v (kip)	L _t /L _L (ft)	L _v (ft)	He (in)	H _{min} (in)
TL-1	18 or above	13.5	4.5	4.5	4.0	18.0	18.0	18.0
TL-2	18 or above	27.0	9.0	4.5	4.0	18.0	20.0	18.0
TL-3	29 or above	71.0	18.0	4.5	4.0	18.0	19.0	29.0
TL-4 (a)	36	68.0	22.0	38.0	4.0	18.0	25.0	36.0
TL-4 (b)	between 36 and 42	80.0	27.0	22.0	5.0	18.0	30.0	36.0
TL-5 (a)	42	160.0	41.0	80.0	10.0	40.0	35.0	42.0
TL-5 (b)	greater than 42	262.0	75.0	160.0	10.0	40.0	43.0	42.0
ΤL Ó		175.0	58.0	80.0	8.0	40.0	56.0	90.0

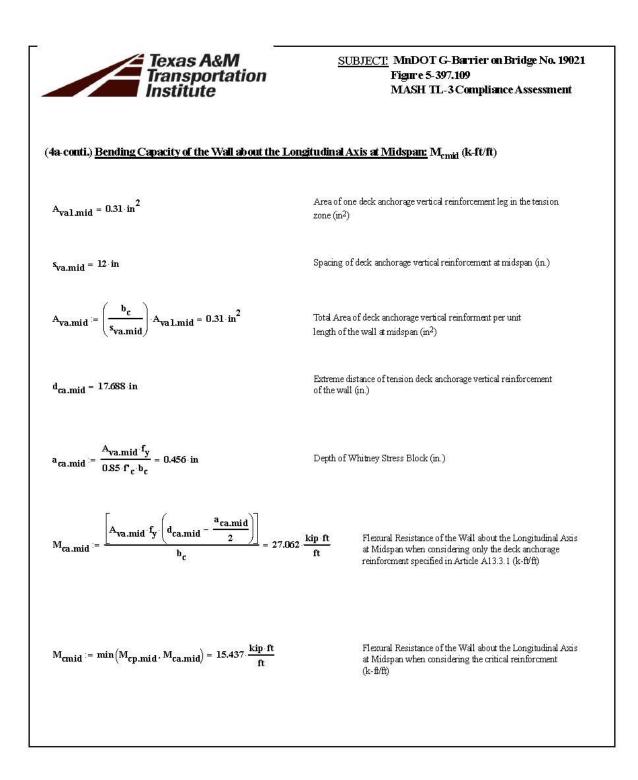

References:

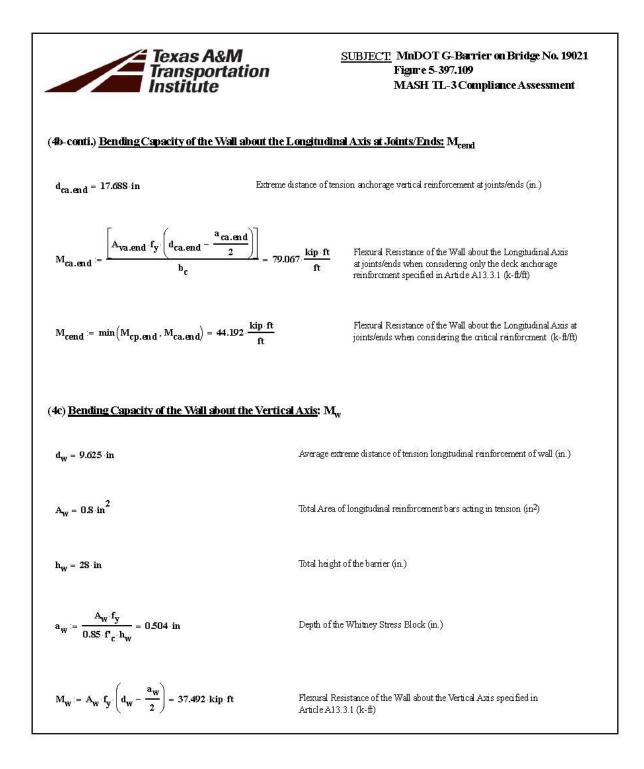

- TL-1 and TL-2 Design Forces are from AASHTO LRFD Section 13 Table A13.2-1
 TL-3 Design Forces are from research conducted under NCHRP Project 20-07 Task 395

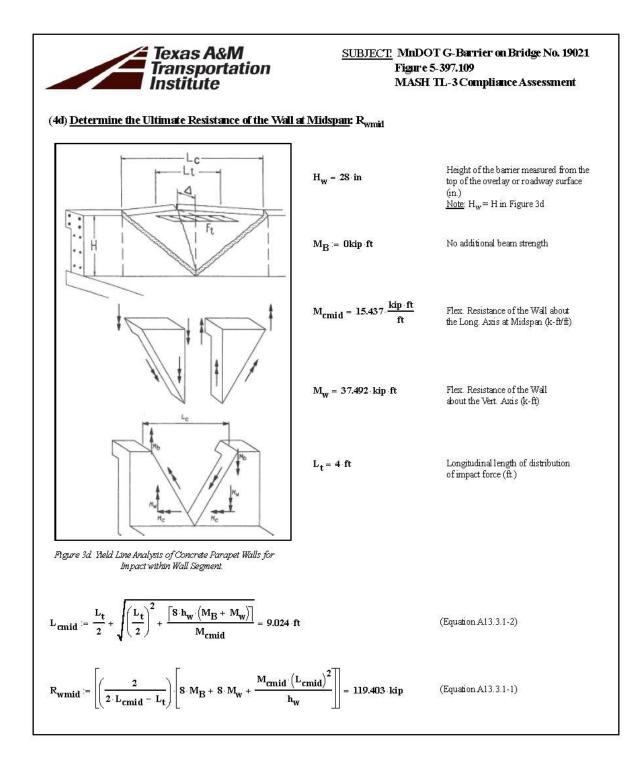

[•] TL-4 (a), TL-4 (b), TL-5 (a), and TL-5 (b) Design Forces are from research conducted under NCHRP Project 22-20(2)

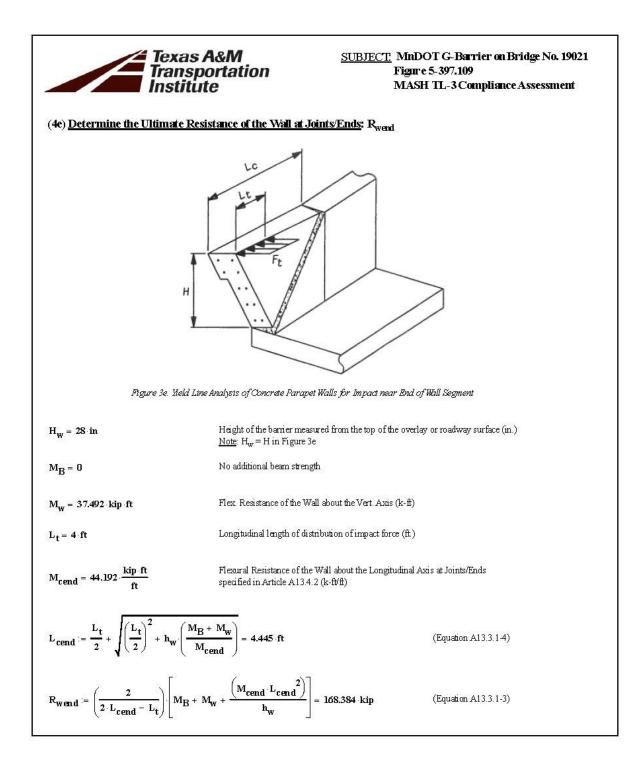
TL = 3	Test Level
F _t := 71kip	Transverse Impact Force
$L_t = 4ft$	Longitudinal Length of Distribution of Impact Force
H _e := 19in	Height of Equivalent Transverse Load
H _{min} := 29in	Minimum height of a MASH TL-3 barrier (in.)
H _r = 40.625 in	Total height of bridge rail system measured from the top of the roadway surface/overlay to the top of highest rail (in.)


Texas A& Transpor Institute	AM tation	<u>SUBJECT</u> MnDOT G-Barrier on Bridge No. 19021 Figure 5-397.109 MASH TL-3 Compliance Assessment
(2) <u>Stability Criteria:</u>		
H _{min} = 29 in Minim	m height of a MASH TL-3 bar	rier (m.)
$H_r = 40.625 \cdot in$ Total he highest		ured from the top of the roadway surface/overlay to the top of
Minimum_Height_of_Barrier_Check	= "OK" if H _r ≥ H _m "NOT OK" otherw:	in ise
Minimum	_Height_of_Barrier_Check	: = "OK"

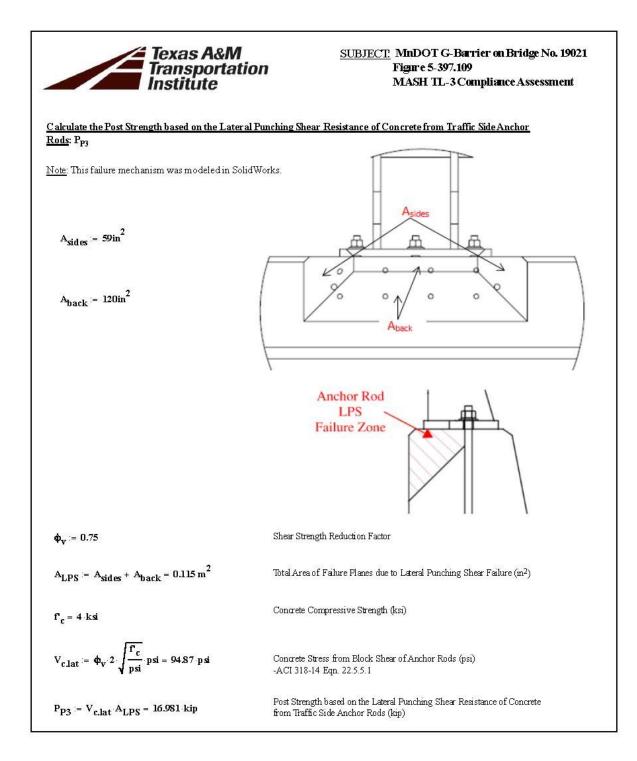


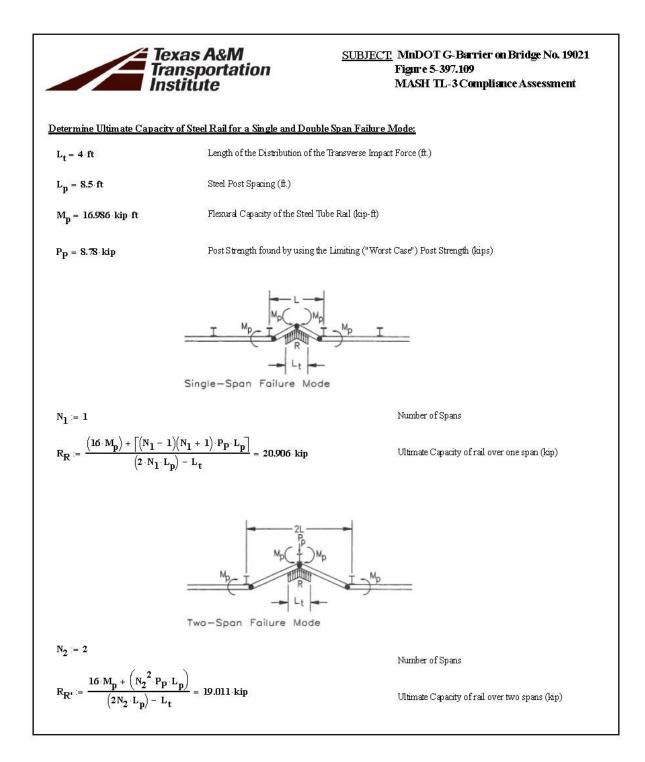


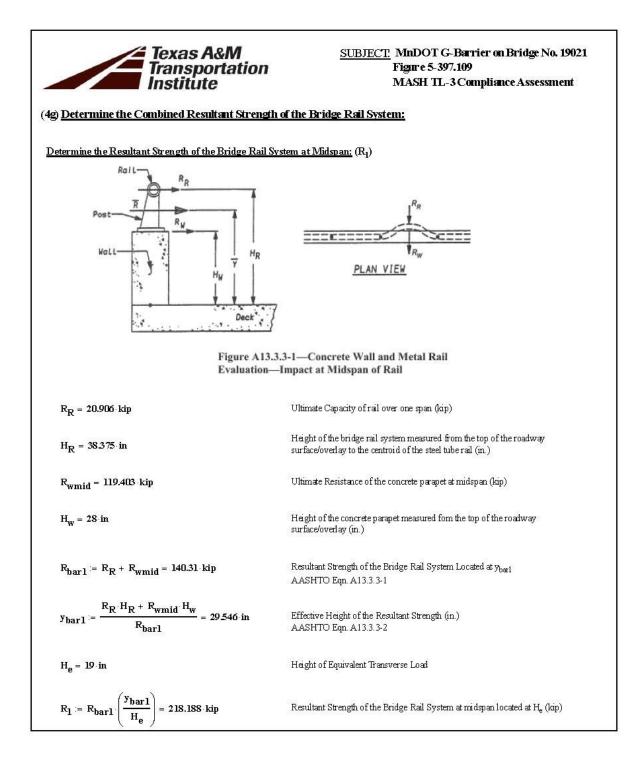

Texas A&M Transportation Institute	<u>SUBJECT</u> : MnDOT G-Barrier on Bridge No. 19021 Figure 5-397.109 MASH TL-3 Compliance Assessment
(3) <u>Geometric Criteria - Summary of Results:</u> Post_Setback_Criteria_Check := "OK" if Post_Setback_ "NOT OK" otherwise	Criteria_Rail_Geometric_Point = Preferred
Post_Setback_Criteria_Chec	k = "NOT OK"
Snag_Potential_Criteria_Check := "OK" if Snag_Potent "NOT OK" otherwise	
Snag_Potential_Criteria_Chee	k = "OK"

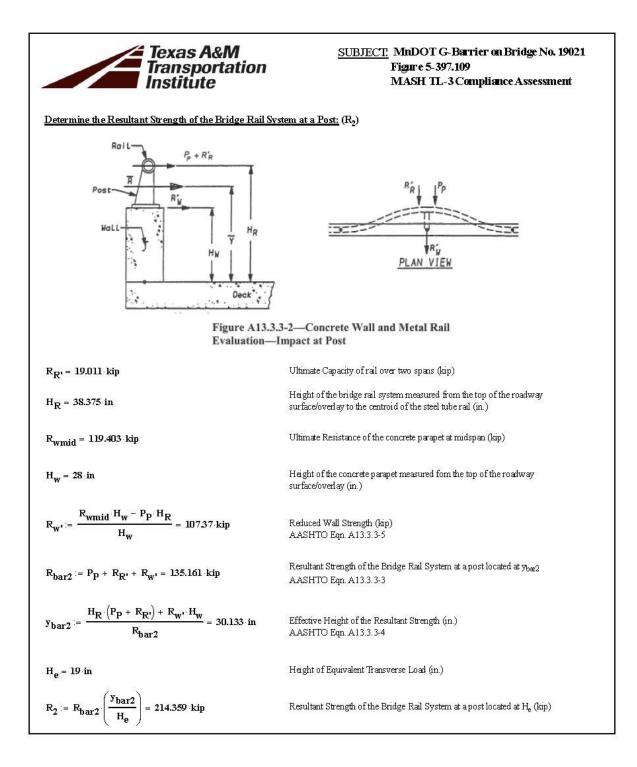


Texas A& Transporta Institute	SUBJECT MnDOT G-Barrier on Bridge No. 19021 ation Figure 5-397.109 MASH TL-3 Compliance Assessment
(4b) <u>Bending Capacity of the Wall abou</u>	t the Longitudinal Axis at Joints/Ends. M _{cend}
$\mathbf{b}_{c} = 12 \cdot \mathbf{in}$	Unit Width of Wall (in.)
$A_{vpl.end} = 0.31 \cdot in^2$	Area of one parapet vertical reinforcement leg in the tension zone at joints/ends (in 2)
s _{vp.end} = 4·in	Spacing of parapet vertical reinforcement atjoints/ends (in.)
$A_{vp.end} := \left(\frac{b_c}{s_{vp.end}}\right) \cdot A_{vp1.end} = 0.93 \cdot in$	n ² Total Area of parapet vertical reinforment per unit length of the wall at joints/ends (in ²)
$a_{cp.end} = \frac{A_{vp.end} f_y}{0.85 f_c b_c} = 1.368 \text{ in}$	Depth of Whitney Stress Block (in.)
d _{cp.end} = 10.188 · in	Average extreme distance of tension parapet vertical reinforcement at joints/ends (in.)
$M_{cp.end} := \frac{\left[A_{vp.end}, f_{y}\right] \left(d_{cp.end} - \frac{a_{cp.}}{2}\right)}{b_{c}}$	and<
$A_{val.end} = 0.31 in^2$	Area of one deck anchorage vertical reinforcement leg in the tension zone at joints/ends (in ²)
$s_{va.end} = 4 \cdot in$	Spacing of deck anchorage vertical reinforcement at joints/ends (in.)
$\mathbf{A_{va.end}} := \left(\frac{\mathbf{b_c}}{\mathbf{s_{va.end}}}\right) \cdot \mathbf{A_{val.end}} = 0.93 \cdot \mathbf{i}\mathbf{r}$	n ² Total Area of deck anchorage vertical reinforment per unit length of the wall at joints/ends (in ²)
$a_{ca.end} = \frac{A_{va.end} \cdot f_y}{0.85 \cdot f_c \cdot b_c} = 1.368 \cdot in$	Depth of Whitney Stress Block (in.)

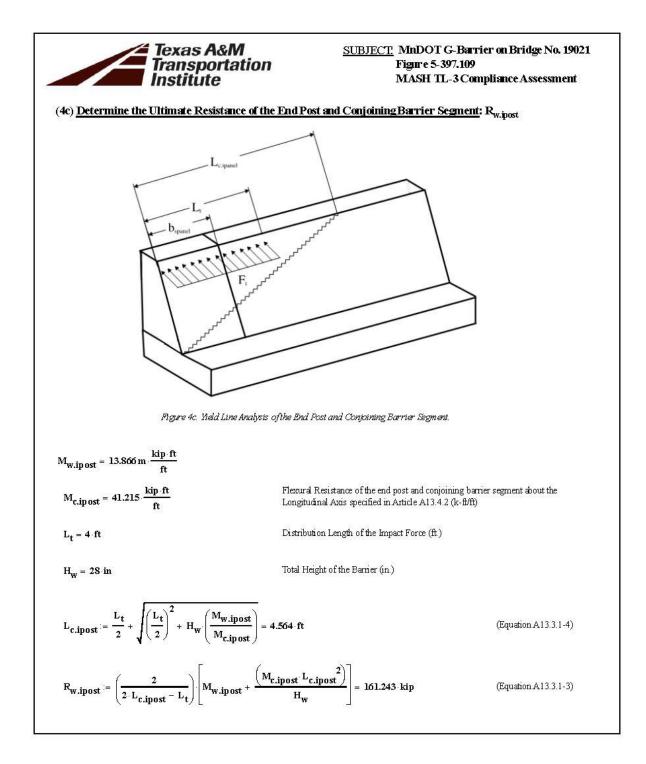


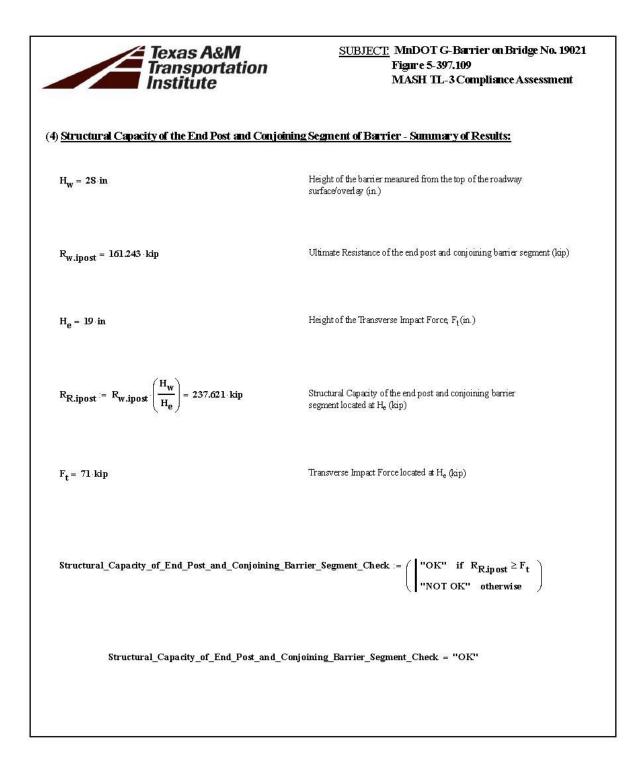



Texas A&M Transportation Institute	SUBJECT: MnDOT G-Barrier on Bridge No. 19021 Figure 5-397.109 MASH TL-3 Compliance Assessment
(4f) <u>Steel Rail & Post Strength Analysis:</u>	
$F_{yR} = 35 ksi$	Yield Strength of Steel Tube Rail (ksi)
d _{0R} = 4.5 in	Outside diameter of Steel Tube Rail (in.)
d _{iR} = 3.83 in	Inside diameter of Steel Tube Rail (in.)
$Z_{R} := \frac{\left(d_{0R}^{3} - d_{1R}^{3}\right)}{6} = 5.824 \cdot in^{3}$	Plastic Sectional Modulus of the Steel Tube Rail (in ³)
$M_p := F_{yR} \cdot Z_R = 16.986 \cdot kip \cdot ft$	Plastic Moment Capacity of the Steel Tube Rail (kip-ft)
<u>Calculate the Plastic Strength of the Post</u> , P _{P1}	
w _p = 10 in	Width of Steel Post about the bending axis (in.)
$t_p = 1 \cdot in$	Thickness of Steel Post (in.)
$Z_{\mathbf{p}} := \frac{w_{\mathbf{p}} t_{\mathbf{p}}^{2}}{4} = 2.5 \text{ in}^{3}$	Plastic Sectional Modulus of the Steel Post about the bending axis (in.)
F _{yp} = 36 ksi	Yield Strength of Steel Post (ksi)
$M_{post} := F_{yp} \cdot Z_p = 7.5 \cdot kip \cdot ft$	Plastic Moment Capacity of the Steel Post (kip-ft)
h _p = 10.25 in	Height from the bottom of the post to the centroid of the steel tube rail (in.)
$P_{p_1} := \frac{M_{post}}{h_p} = 8.78 \cdot kip$	Post Strength based on the Plastic Failure of a Steel Post (kip)


Texas A&M Transportation Institute	<u>SUBJECT</u> MnDOT G-Barrier on Bridge No. 19021 Figure 5-397.109 MASH TL-3 Compliance Assessment
<u>Calculate the Post Strength based on the Ultimate Stren</u>	ngth of the Anchor Rods: P _{P2}
F _{u.rod} = 58 ksi	Tensile Strength of the Anchor Rods (ksi)
$\phi_{rod} = 1 \cdot in$	Diameter of Anchor Rods (in)
$A_{rod} := \frac{\pi}{4} \cdot \phi_{rod}^2 = 0.785 \cdot in^2$	Area of a Anchor Rod (in ²)
$\mathbf{R_{nt}} := \mathbf{F_{u.rod}} \cdot \left(0.75 \cdot \mathbf{A_{rod}} \right) = 34.165 \cdot \mathbf{kip}$	Nominal strength of one Anchor Rod in Tension (kip)
$N_{rod.tension} = 2$	Number of Anchor Rods acting in tension
d _{rod} = 5 in	Distance from the anchor rods acting in tension to the back of the steel plate (in.)
d _b := 1.5in	Length of the steel plate bearing pressure acting on the concrete parapet $(in.)$
$\mathbf{w_{rod}} := \mathbf{d_{rod}} - \frac{\mathbf{d_b}}{3} = 4.5 \text{ in}$	Distance from anchor rods acting in tension to the centroid of the bearing pressure acting on the concrete parapet (in.)
$M_{trod} = w_{rod} R_{nt} N_{rod,tension} = 25.624 kip ft$	Moment strength of Post based on tensile capacity of Anchor Rods (k-ft)
h _p = 10.25 in	Height from the bottom of the post to the centroid of the steel tube rail (in.)
$P_{t.rod} := \frac{M_{t.rod}}{h_p} = 29.998 \cdot kip$	Post Strength based on the tensile capacity of Anchor Rods (kip)
$\mathbf{R_{nv}} \coloneqq \mathbf{F_{u.rod}} \left(0.45 \cdot \mathbf{A_{rod}} \right) = 20.499 \cdot \mathbf{kip}$	Nominal strength of one anchor rod in Shear w/h threads in shear plane (kip)
$P_{v,rod} = N_{rod} R_{nv} = 20.499 Kip$	Post Strength based on the shear capacity of Anchor Rods (kip)
$P_{P2} := min(P_{t,rod}, P_{v,rod}) = 20.499 kip$	Post Strength based on the Ultimate Strength of the Anchor Rods (kip)

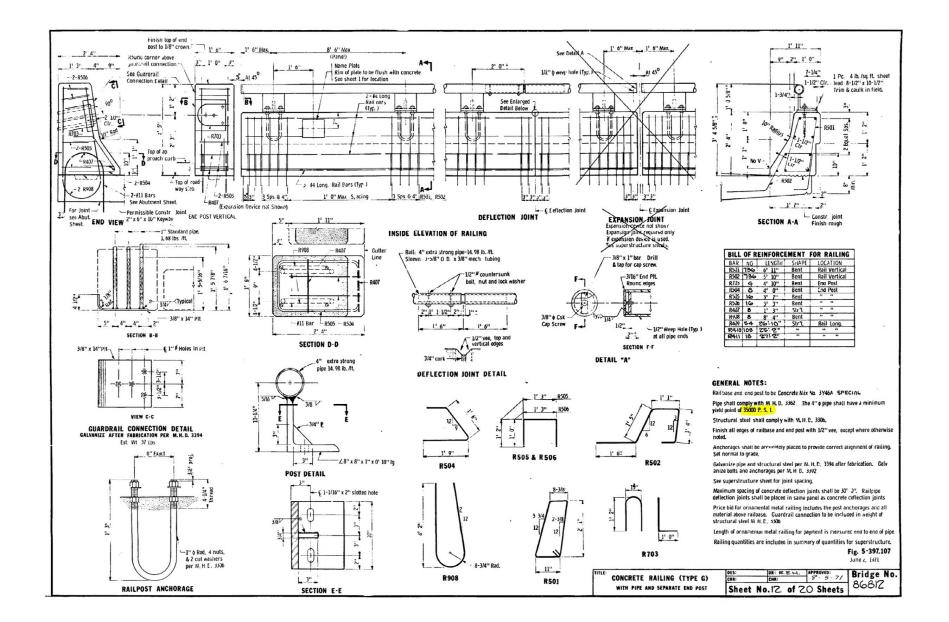
Texas A&M Transportation Institute	<u>SUBJECT</u> MnDOT G-Barrier on Bridge No. 19021 Figure 5-397.109 MASH TL-3 Compliance Assessment
Determine the Limiting ("Worst Case") Post Strength	<u>ı (kips):</u> P _P
P _{p1} = 8.78 kip	Post Strength based on the Plastic Failure of a Steel Post (kip)
P _{P2} = 20.499 kip	Post Strength based on the Ultimate Strength of the Anchor Rods (kip)
P _{P3} = 16.981 kip	Post Strength based on the Lateral Punching Shear Resistance of Concrete from Traffic Side Anchor Rods (kip)
$\mathbf{P_{P}} := \min\left(\mathbf{P_{P1}}, \mathbf{P_{P2}}, \mathbf{P_{P3}}\right) = 8.78 \cdot kip$	Post Strength found by using the Limiting ("Worst Case") Post Strength (kips)

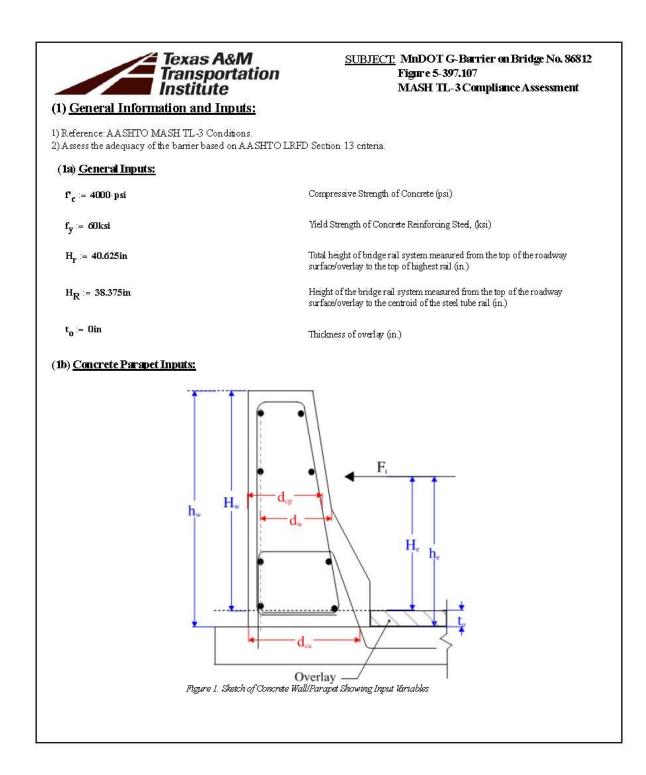




Texas A&M Transportation Institute	<u>SUBJECT</u> MnDOT G-Barrier on Bridge No. 19021 Figure 5-397.109 MASH TL-3 Compliance Assessment
(4) LRFD Strength Analysis of the Barrier perAA	SHTO Section 13 Specifications - Summary of Results:
F _t = 71 kip	Transverse Impact Force located at H _e (kip)
R ₁ = 218.188 kip	Resultant Strength of the Bridge Rail System at midspan located at \mathbf{H}_{e} (kip)
Structural_Capacity_of_Barrier_at_Midspan_Chec	k := "OK" if $R_1 \ge F_t$ "NOT OK" otherwise
Structural_Capacity_0	f_Barrier_at_Midspan_Check = "OK"
R ₂ = 214.359 kip	Resultant Strength of the Bridge Rail System at a post located at H _e (kip)
Structurel Consists of Remise at a Best Charles	LUORU & D.S.F.
Structural_Capacity_of_Barrier_at_a_Post_Check	$=$ OK If $\mathbf{r}_2 \ge \mathbf{r}_t$
	f_Barrier_at_a_Post_Check = "OK"

Texas A&M Transportation Institute	<u>SUBJECT</u> MnDOT G-Barrier on Bridge No. 19021 Figure 5-397.109 MASH TL-3 Compliance Assessment
(4b) <u>Bending Capacity of the End Post and Conjoinin</u>	gBarrier Segment about the Vert. Axis: M _{w.ipost}
A _{wlipost} = 0.2in ²	Area of one longitudinal reinforcement bar in tension (in^2)
$n_{w.ipost} := 4$	Number of longitudinal reinforcement bars acting in tension
$A_{w.ipost} := A_{w1.ipost} \cdot n_{w.ipost} = 0.8 \cdot in^2$	Total Area of longitudinal reinforcement bars acting in tension (in $\!\!\!\!\!\!^2)$
h _w = 28∙in	Total height of the barrier (in.)
$a_{w.ipost} = \frac{A_{w.ipost} \cdot f_y}{0.85 \cdot f_c \cdot h_w} = 0.504 \cdot in$	Depth of the Whitney Stress Block (in.)
d _{w.ipost} := 11.625in	Average extreme distance of tension longitudinal reinforcement (in.)
$\mathbf{M}_{\mathbf{w},\mathbf{ipost}} := \mathbf{A}_{\mathbf{w},\mathbf{ipost}} \cdot \mathbf{f}_{\mathbf{y}} \cdot \left(\mathbf{d}_{\mathbf{w},\mathbf{ipost}} - \frac{\mathbf{a}_{\mathbf{w},\mathbf{ipost}}}{2} \right) = 45.492$	- kip ft Flexural Resistance of the end post and conjoining barrier segment about the Vertical Axis specified in Article A13.3.1 (k-ft)





Texas A&M Transportation Institute	<u>SUBJECT</u> MnDOT G-Barrie Fignre 5-397.109 MASH TL-3 Comp
(6) <u>Conclusions:</u>	
Minimum_Height_of_Barrier_Check = "OK"	
Post_Setback_Criteria_Check = "NOT OK"	
Snag_Potential_Criteria_Check = "OK"	
Structural_Capacity_of_Barrier_at_Midspan_Check = "OK"	
Structural_Capacity_of_Barrier_at_a_Post_Check = "OK"	
Structural_Capacity_of_End_Post_and_Conjoining_Barrier_S	egment_Check = "OK"
The G-Barrier on Bridge No. 09830 (Fig. 5 MASH TL-3 Cri	

BJECT: MnDOT G-Barrier on Bridge No. 19021 Figure 5-397.109 MASH TL-3 Compliance Assessment

APPENDIX D3: G BARRIER ON BRIDGE NO. 86812 (FIGURE 5-397.107)

Texas A Transpo Institute	&M ortation e	<u>SUBJECT.</u> MnDOT G-Barrier on Bridge No. 86812 Figure 5-397.107 MASH TL-3 Compliance Assessment	
(10-conti.) <u>Concrete Parapet Input</u>	<u>s:</u>		
H _W := 28in	Height of the concrete parapet/wall measured from the top of the roadway surface/overlay (in.)		
$\mathbf{h}_{\mathbf{W}} := \mathbf{H}_{\mathbf{W}} + \mathbf{t}_{0} = 28 \cdot \mathbf{in}$	Total height of the concr	rete parapet/wall (in.)	
Parapet Vertical Reinforcement Inputs	1		
$A_{vpl.mid} = 0.31in^2$	Area of one parapet vert	ical reinforcement leg in the tension zone at midspan (in^2)	
s _{vp.mid} = 12in	Average Spacing of para	apet vertical reinforcement at midspan (in.)	
d _{cp.mid} = 10.1875 in	Extreme distance of par	apet vertical reinforcement in tension at midspan (in.)	
$A_{vpl.end} = 0.31in^2$	Area of one parapet vert	ical reinforcement leg in the tension zone at joints/ends (in^2)	
^s vp.end = 4 in	Average Spacing of para	apet vertical reinforcement at joints/ends (in.)	
d _{cp.end} := 10.1875 in	Extreme distance of ten	sion parapet vertical reinforcement at joints/ends (in.)	
Longitudinal Reinforcement Inputs:			
$A_w = 0.8in^2$	Area of longitudinal rei	nforcement bars in tension (in ²)	
d _W ∶= 9.625in	Extreme distance of tens	ion longitudinal reinforcement of wall (in.)	

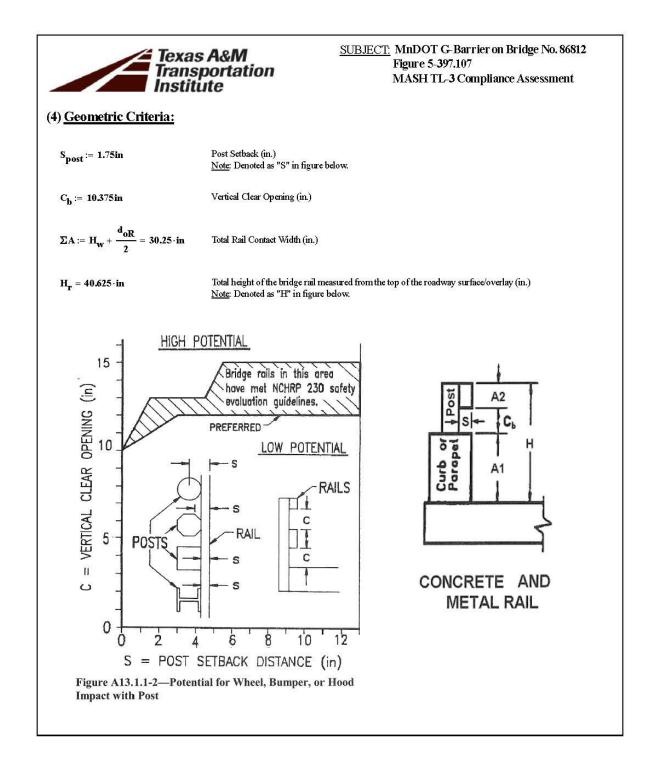
Texas As Transpor Institute	SM rtation	<u>SUBJECT</u> . MnDOT G-Barrier on Bridge No. 86812 Figure 5-397.107 MASH TL-3 Compliance Assessment				
(1b-conti.) <u>Concrete Parapet Inputs:</u>						
Deck Anchorage Vertical Reinforceme	<u>nt Inputs:</u>					
^L proj_R502 ^{:=} 10in	Projected length of R502 :	reinforcement over the slab (in.)				
L _{wid_R502} := 13in	Outer width of R502 rein	forcement (in.)				
Cover := 2in	Cover clear distance (in.)					
$Ratio_{R502} = \frac{6}{12}$	Inclined angle of R502 reinforcement					
d _{b_R502} = 0.625in	Nominal diameter of R502 reinforcement (#5 bar)					
Coping := 2in	Coping on the back of the barrier					
d _{ca} = L _{wid_R502} + L _{proj_R502} · Ra	$1 tio_{R502} + Cover - \frac{1}{2} d_b$	_R502 - Coping = 17.688 in				
	Extreme distance of tensio	on deck anchorage vertical reinforcement (in,)				
$A_{val.mid} = 0.31 in^2$	Area of one deck anchora	ge vertical reinforcement leg in the tension zone at midspan (in^2)				
s _{va.mid} := 12in	Awerage Spacing of deck	anchorage vertical reinforcement at midspan (in.)				
$d_{ca.mid} = d_{ca} = 17.688$ in	Extreme distance of tensio	on deck anchorage vertical reinforcement of the wall at midspan(in.)				
Aval.end = 0.31in ²	Area of one deck anchora	ge vertical reinforcement leg in the tension zone at joints/ends (in ²)				
s _{va.end} := 4in	Average Spacing of deck	anchorage vertical reinforcement at joints/ends (in)				
$\mathbf{d_{ca.end}} \coloneqq \mathbf{d_{ca}} = 17.688 \text{ in}$	Extreme distance of tensio	on deck anchorage vertical reinforcement at joints/ends (in.)				

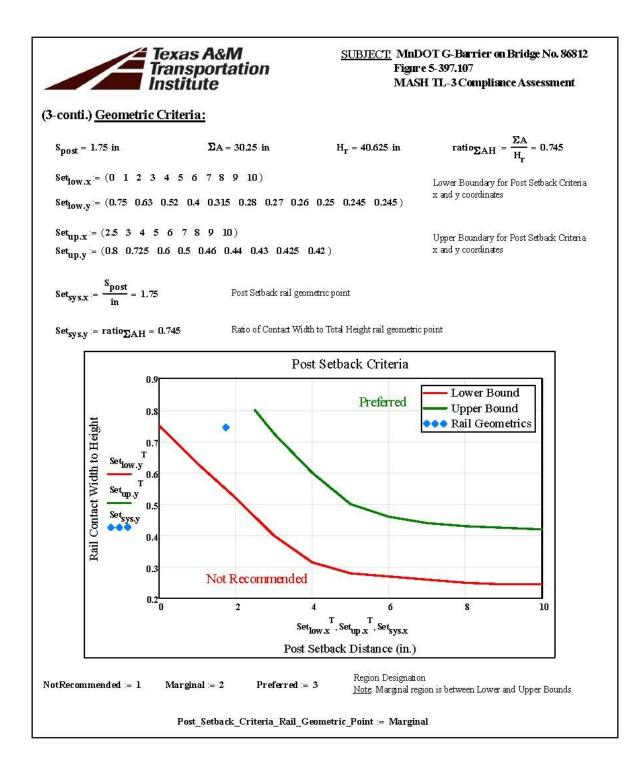
	Texas A&M <u>SUBJE</u> Transportation Institute	<u>CT</u> MnDOT G-B a rrier on Bridge No. 86812 Figure 5-397.107 MASH TL-3 Compliance Assessment
(1b) <u>Steel Rail, Post, a</u>	nd Anchor Rod Inputs:	
Steel Rail Inputs: a) Steel Tube Rail is M.H.I b) Steel Tube Rail is a 4" ez). 3362 material, Fy=35ksi tra strong pipe	A" extra strong pipe 14. 98 lb./ft.
F _{yR} = 35ksi	Yield Strength of Steel Tube Rail (ksi)	3/8 -
d _{oR} := 4.5in	Outside diameter of Steel Tube Rail (in.)	× × × × × × × × × × × × × × × × × × ×
d _{iR} ≔ 3.83in	Inside diameter of Steel Tube Rail (in.)	
Steel Post Inputs: a) Steel Post is M.H.D. 330 b) Steel Post is a 8"x8"x1"z		POST DETAIL
Fyp := 36ksi	Yield Strength of Steel Post (ksi)	3" - € 1.5/16" x 2" slotted hole
w _p := 10in	Width of Steel Post about the bending axis (in.)	
t _p := lin	Thickness of Sted Post (in.)	3/8
h _p := 10.25in	Height from the bottom of the post to the centroid of the steel tube rail (in.)	
$L_p = 8.5ft$	Sted Post Spacing (ft.)	SECTION E-E
<mark>Anchor Rod Inputs:</mark> a) Anchor Rods are F1554 b) Anchor Rods are 1"¢ x	Gr 36 material, Fu=58 ksi 15" U bolt	6" Exact
Fu.rod = 58ksi	Tensile Strength of Anchor Rods (ksi)	
N _{rod} := 1	Number of Anchor Rods	
N _{rod.tension} := 2	Number of Anchor Rods in Tension	5
a	Distance from the anchor rods acting in	1" 0 Rod, 4 m
d _{rod} := 5.0in	tension to the back of the steel plate (in.)	& 2 cut washe per M. H. D. 3

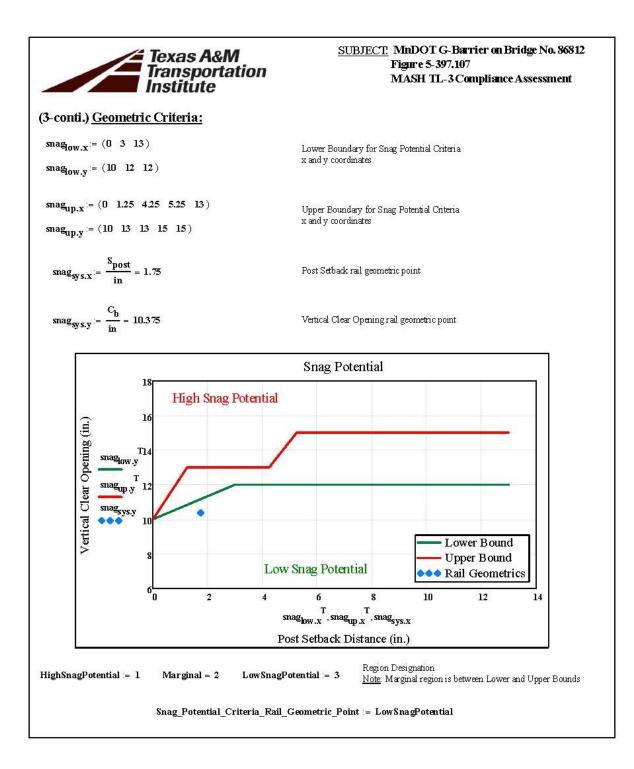
(1c) Design Force Inputs:

Test Level	Rail Height (in.)	Ft (kip)	FL (kip)	F _v (kip)	L _t /L _L (ft)	L _v (ft)	H _e (in)	H _{min} (in)
TL-1	18 or above	13.5	4.5	4.5	4.0	18.0	18.0	18.0
TL-2	18 or above	27.0	9.0	4.5	4.0	18.0	20.0	18.0
TL-3	29 or above	71.0	18.0	4.5	4.0	18.0	19.0	29.0
TL-4 (a)	36	68.0	22.0	38.0	4.0	18.0	25.0	36.0
TL-4 (b)	between 36 and 42	80.0	27.0	22.0	5.0	18.0	30.0	36.0
TL-5 (a)	42	160.0	41.0	80.0	10.0	40.0	35.0	42.0
TL-5 (b)	greater than 42	262.0	75.0	160.0	10.0	40.0	43.0	42.0
TL6		175.0	58.0	80.0	8.0	40.0	56.0	90.0

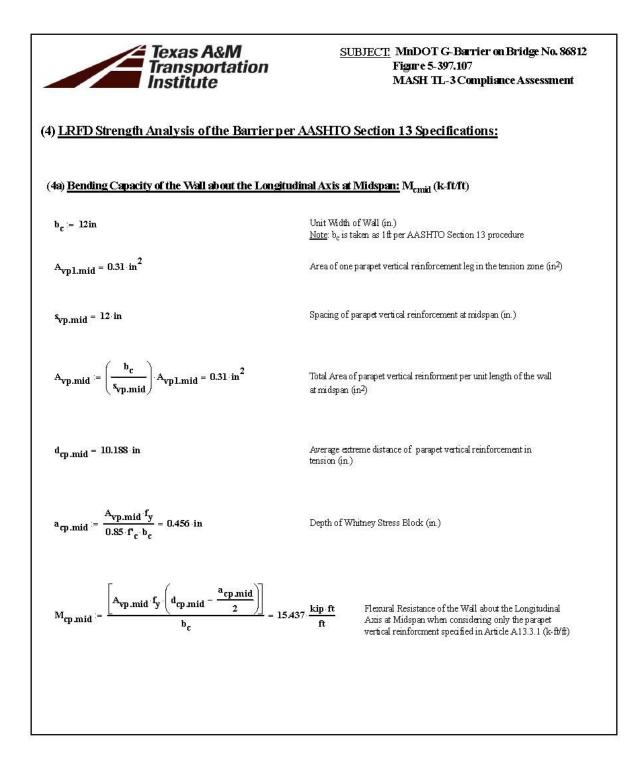
Design Forces for Traffic Railings

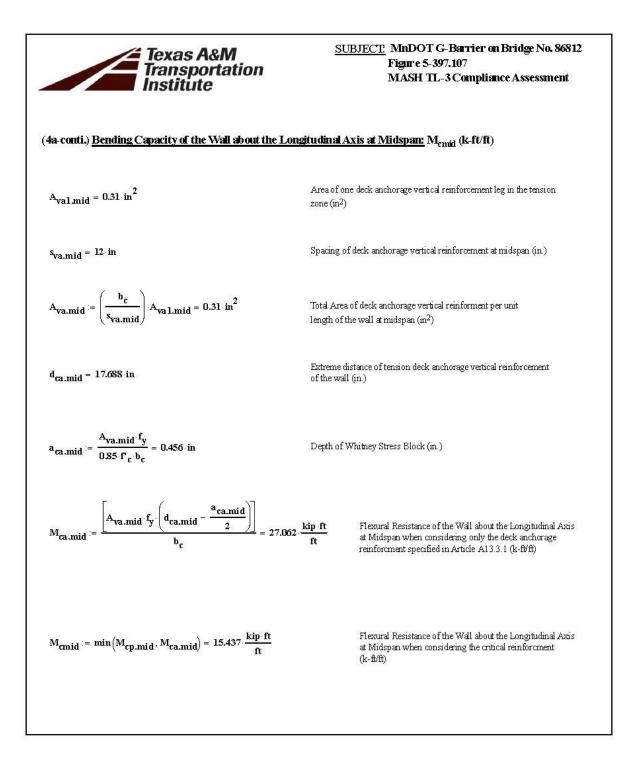

References:

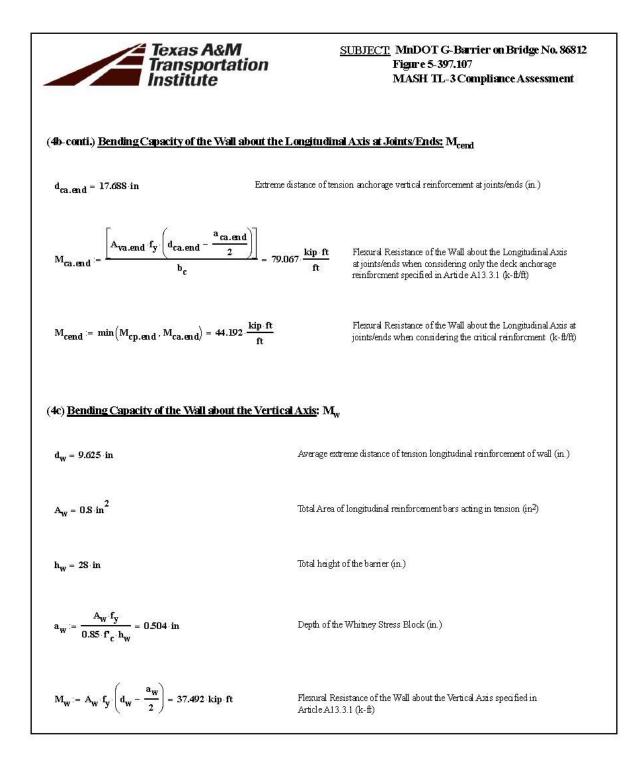

- TL-1 and TL-2 Design Forces are from AASHTO LRFD Section 13 Table A13.2-1
 TL-3 Design Forces are from research conducted under NCHRP Project 20-07 Task 395

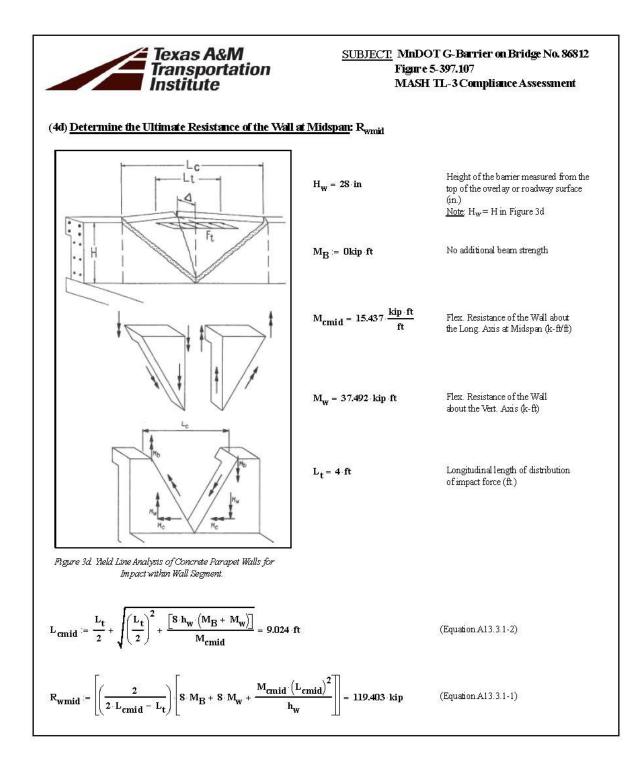

•	TL-4 (a), TL-4 (b), TL-5 (a), and TL-5 (b) Design Forces are from research conducted under
	NCHRP Project 22-20(2)

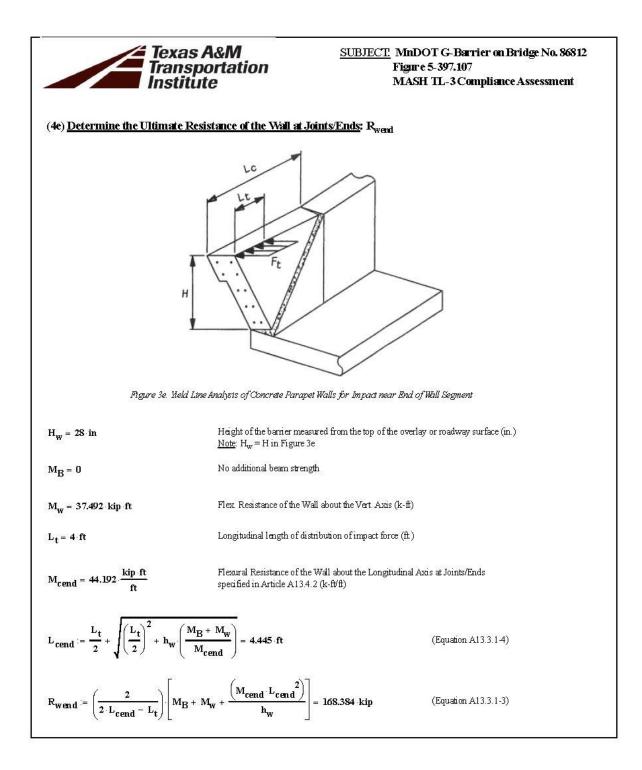
TL = 3	Test Level
$\mathbf{F}_t := 71 \mathbf{kip}$	Transverse Impact Force
$L_t = 4ft$	Longitudinal Length of Distribution of Impact Force
H _e = 19in	Height of Equivalent Transverse Load
H _{min} := 29in	Minimum height of a MASH TL-3 barrier (in.)
H _r = 40.625 in	Total height of bridge rail system measured from the top of the roadway surface/overlay to the top of highest rail (in.)


Texas A&M Transportation Institute	<u>SUBJECT.</u> MnDOT G-Barrier on Bridge No. 86812 Figure 5-397.107 MASH TL-3 Compliance Assessment
(2) <u>Stability Criteria:</u>	
H _{min} = 29 in Minimum height of a MASH TI	~3 barrier (in.)
H _r = 40.625 in Total height of bridge rail system highest rail (in.)	n measured from the top of the roadway surface/overlay to the top of
Minimum_Height_of_Barrier_Check := "OK" if H _r : "NOT OK" of	≥ H _{min} therwise
Minimum_Height_of_Barrier_0	Check = "OK"

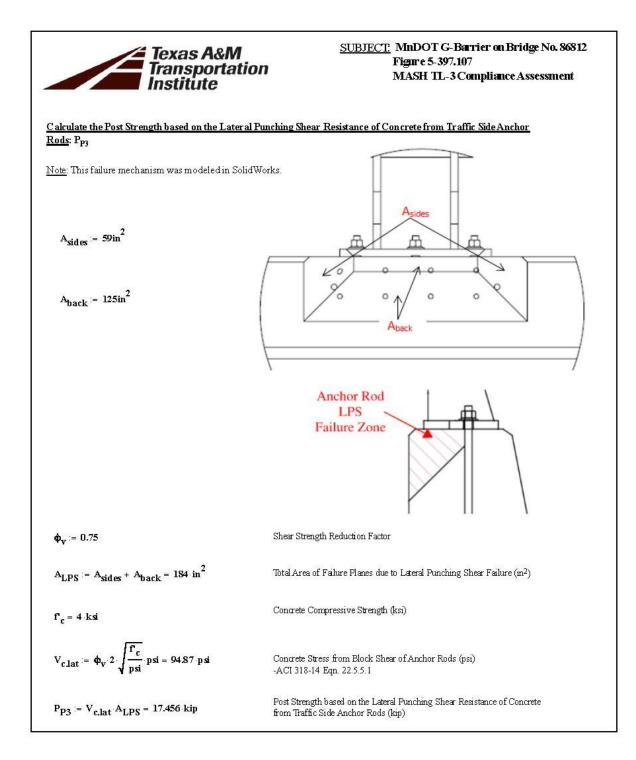


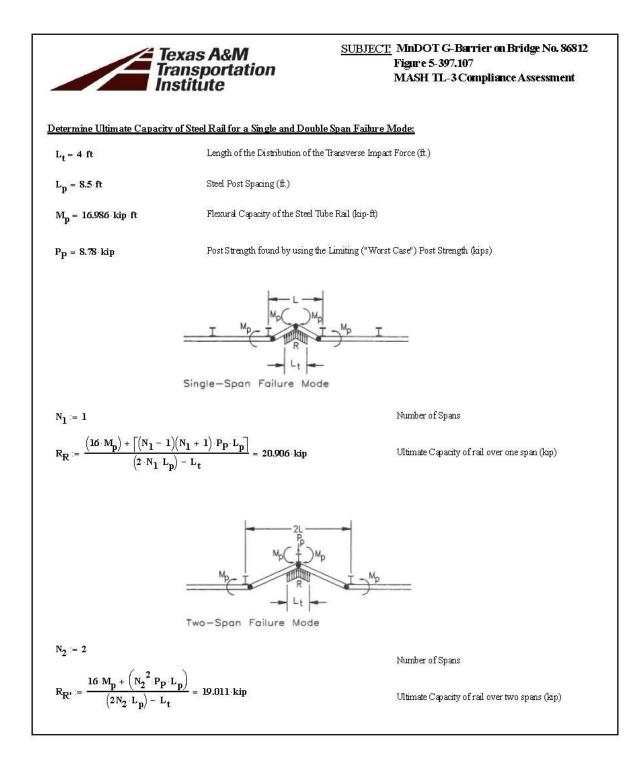


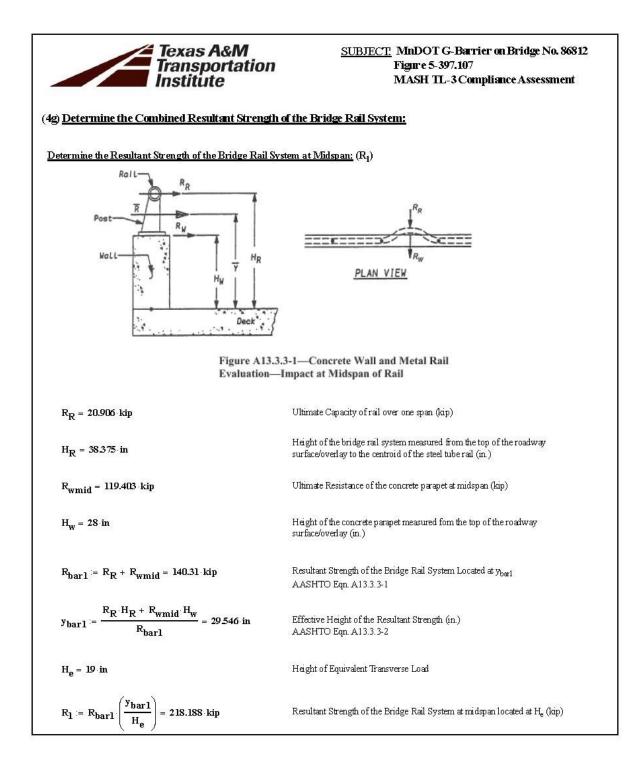

Texas A&M Transportation Institute	<u>SUBJECT</u> . MnDOT G-Barrier on Bridge No. 86812 Figure 5-397.107 MASH TL-3 Compliance Assessment
(3) <u>Geometric Criteria - Summary of Results:</u>	
Post_Setback_Criteria_Check := "OK" if Post_Setback_C "NOT OK" otherwise	riteria_Rail_Geometric_Point = Preferred
Post_Setback_Criteria_Check	= "NOT OK"
Snag_Potential_Criteria_Check := "OK" if Snag_Potentia "NOT OK" otherwise	l_Criteria_Rail_Geometric_Point = LowSnagPotential
Snag_Potential_Criteria_Check	= "OK"

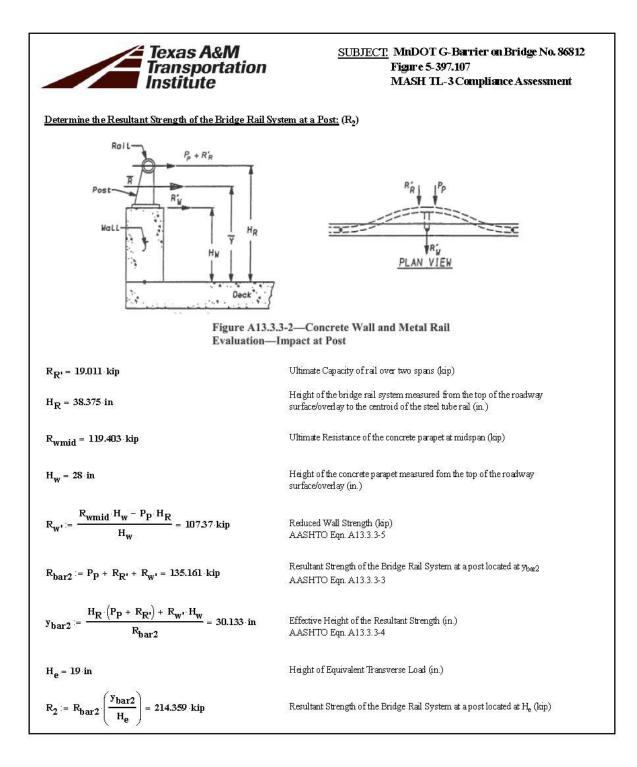


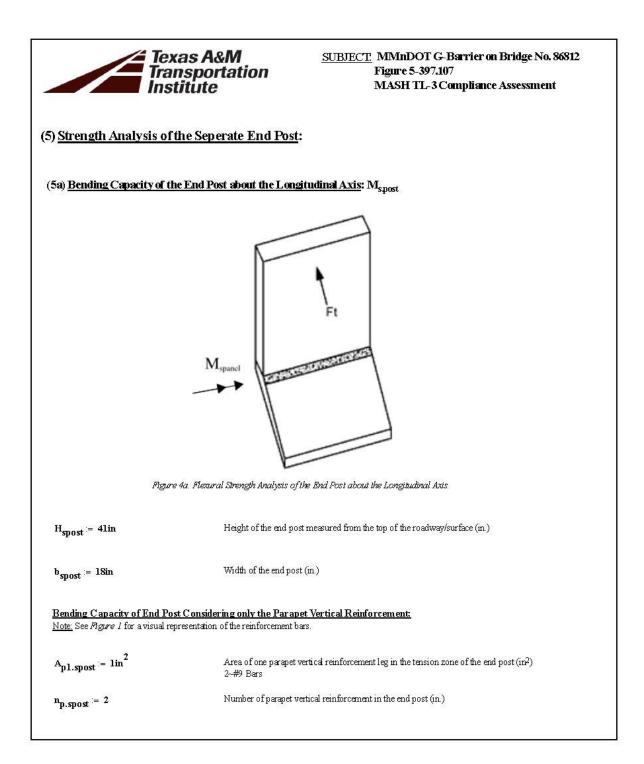
Texas A&A Transporta Institute	A SUBJECT: MnDOT G-Barrier on Bridge No. 86812 Figure 5-397.107 MASH TL-3 Compliance Assessment
(4b) <u>Bending Capacity of the Wall about</u>	t the Longitudinal Axis at Joints/Ends. M _{cent}
$\mathbf{b}_{\mathbf{c}} = 12 \cdot \mathbf{in}$	Unit Width of Wall (in.)
$A_{vpl.end} = 0.31 \cdot in^2$	Area of one parapet vertical reinforcement leg in the tension zone at joints/ends (in 2)
s _{vp.end} = 4.in	Spacing of parapet vertical reinforcement atjoints/ends (in.)
$A_{vp.end} := \left(\frac{b_c}{s_{vp.end}}\right) \cdot A_{vp1.end} = 0.93 \cdot in$	Total Area of parapet vertical reinforment per unit length of the wall at joints/ends (in ²)
$a_{cp.end} = \frac{A_{vp.end} \cdot f_y}{0.85 \cdot f_c \cdot b_c} = 1.368 \text{ in}$	Depth of Whitney Stress Block (in.)
d _{cp.end} = 10.188 in	Average extreme distance of tension parapet vertical reinforcement at joints/ends (in)
$M_{cp.end} := \frac{\left[A_{vp.end} \cdot f_{y} \cdot \left(d_{cp.end} - \frac{a_{cp.}}{2}\right) + b_{c}\right]}{b_{c}}$	end) = 44.192 \cdot kip ft ft Flexural Resistance of the Wall about the Longitudinal Axis at Joints/Ends when considering only the parapet vertical reinforcment specified in Article A13.3.1 (k-fb/ft)
$A_{val.end} = 0.31 \cdot in^2$	Area of one deck anchorage vertical reinforcement leg in the tension zone at joints/ends (in^2)
$s_{va.end} = 4 in$	Spacing of deck anchorage vertical reinforcement at joints/ends (in.)
$\mathbf{A_{va,end}} := \left(\frac{\mathbf{b_c}}{\mathbf{s_{va,end}}}\right) \cdot \mathbf{A_{val,end}} = 0.93 \cdot \mathbf{in}$	² Total Area of deck anchorage vertical rainforment per unit length of the wall at joints/ends (in ²)
$a_{ca.end} = \frac{A_{va.end} \cdot f_y}{0.85 \cdot f_c \cdot b_c} = 1.368 \cdot in$	Depth of Whitney Stress Block (in.)






Texas A&M Transportation Institute	<u>SUBJECT</u> : MnDOT G-Barrier on Bridge No. 86812 Figure 5-397.107 MASH TL-3 Compliance Assessment
(4f) <u>Steel Rail & Post Strength Analysis:</u>	
F _{yR} = 35 ksi	Vield Strength of Steel Tube Rail (ksi)
d _{0R} = 4.5 in	Outside diameter of Steel Tube Rail (in.)
$d_{iR} = 3.83 \cdot in$	Inside diameter of Steel Tube Rail (in.)
$\mathbf{Z}_{\mathbf{R}} := \frac{\left(\mathbf{d}_{0\mathbf{R}}^{3} - \mathbf{d}_{1\mathbf{R}}^{3}\right)}{6} = 5.824 \cdot \mathbf{in}^{3}$	Plastic Sectional Modulus of the Steel Tube Rail (in ³)
$M_p := F_{yR} \cdot Z_R = 16.986 \cdot kip \cdot ft$	Plastic Moment Capacity of the Steel Tube Rail (kip-ft)
<u>Calculate the Plastic Strength of the Post</u> : P _{Pl}	
$w_p = 10 \cdot in$	Width of Steel Post about the bending axis (in.)
$\mathbf{t_p} = 1 \cdot \mathbf{in}$	Thickness of Steel Post (in.)
$Z_{\rm p} := \frac{{\rm w_p \cdot t_p}^2}{4} = 2.5 {\rm in}^3$	Plastic Sectional Modulus of the Steel Post about the bending axis (in.)
F _{yp} = 36·ksi	Yield Strength of Steel Post (ksi)
$M_{post} = F_{yp} \cdot Z_p = 7.5 \cdot kip \cdot ft$	Plastic Moment Capacity of the Steel Post (kip-ft)
h _p = 10.25 in	Height from the bottom of the post to the centroid of the steel tube rail (in.)
$P_{p_1} := \frac{M_{post}}{h_p} = 8.78 \cdot kip$	Post Strength based on the Plastic Failure of a Steel Post (kip)


Texas A&M Transportation Institute	<u>SUBJECT</u> : MnDOT G-Barrier on Bridge No. 86812 Figure 5-397.107 MASH TL-3 Compliance Assessment
<u>C</u> alculate the Post Strength based on the Ultimate Stren	ngth of the Anchor Rods: P _{P2}
F _{u.rod} = 58 ksi	Tensile Strength of the Anchor Rods (ksi)
$\phi_{rod} = 1 \cdot in$	Diameter of Anchor Rods (in)
$A_{rod} := \frac{\pi}{4} \cdot \phi_{rod}^2 = 0.785 \cdot in^2$	Area of a Anchor Rod (in ²)
$R_{nt} := F_{u,rod} \left(0.75 A_{rod} \right) = 34.165 kip$	Nominal strength of one Anchor Rod in Tension (kip)
N _{rod.tension} = 2	Number of Anchor Rods acting in tension
d _{rod} = 5 in	Distance from the anchor rods acting in tension to the back of the steel plate (in.)
d _b := 1.5in	Length of the steel plate bearing pressure acting on the concrete parapet $(\mathbf{n}.)$
$w_{rod} := d_{rod} - \frac{d_b}{3} = 4.5 \text{ in}$	Distance from anchor rods acting in tension to the centroid of the bearing pressure acting on the concrete parapet (in.)
$M_{trod} = W_{rod} \cdot R_{nt} \cdot N_{rod,tension} = 25.624 \text{ kip ft}$	Moment strength of Post based on tensile capacity of Anchor Rods (k-ft)
$h_{p} = 10.25 \cdot in$	Height from the bottom of the post to the centroid of the steel tube rail (in.)
$P_{t,rod} := \frac{M_{t,rod}}{h_p} = 29.998 \cdot kip$	Post Strength based on the tensile capacity of Anchor Rods (kip)
$\mathbf{R_{nv}} \coloneqq \mathbf{F_{u.rod}} \cdot \left(0.45 \cdot \mathbf{A_{rod}} \right) = 20.499 \cdot \mathbf{kip}$	Nominal strength of one anchor rod in Shear w/h threads in shear plane (kip)
$P_{v.rod} = N_{rod} R_{nv} = 20.499 kip$	Post Strength based on the shear capacity of Anchor Rods (kip)
$P_{P2} := min(P_{t,rod}, P_{v,rod}) = 20.499 kip$	Post Strength based on the Ultimate Strength of the Anchor Rods (kip)


Texas A&M Transportation Institute	<u>SUBJECT</u> MnDOT G-Barrier on Bridge No. 86812 Figure 5-397.107 MASH TL-3 Compliance Assessment
Determine the Limiting ("Worst Case") Post Strength	<u>ı (kips):</u> P _p
P _{P1} = 8.78 kip	Post Strength based on the Plastic Failure of a Steel Post (kip)
P _{P2} = 20.499 kip	Post Strength based on the Ultimate Strength of the Anchor Rods (kip)
P _{P3} = 17.456 kip	Post Strength based on the Lateral Punching Shear Resistance of Concrete from Traffic Side Anchor Rods (kip)
$\mathbf{P_{P}} \coloneqq \min \left(\mathbf{P_{P1}}, \mathbf{P_{P2}}, \mathbf{P_{P3}} \right) = \mathbf{S}.78 \cdot \mathbf{kip}$	Post Strength found by using the Limiting ("Worst Case") Post Strength (kips)

Texas A&M Transportation Institute	<u>SUBJECT</u> MnDOT G-Barrier on Bridge No. 86812 Figure 5-397.107 MASH TL-3 Compliance Assessment
(4) <u>LRFD Strength Analysis of the Barrier per AA</u>	SHTO Section 13 Specifications - Summary of Results:
F _t = 71 kip	Transverse Impact Force located at H _e (kip)
R ₁ = 218.188 kip	Resultant Strength of the Bridge Rail System at midspan located at $\rm H_{e}$ (kip)
Structural_Capacity_of_Barrier_at_Midspan_Chec	$\mathbf{k} :=$ "OK" if $\mathbf{R}_1 \ge \mathbf{F}_t$ "NOT OK" otherwise
Structural_Capacity_o	f_Barrier_at_Midspan_Check = "OK"
R ₂ = 214.359 kip	Resultant Strength of the Bridge Rail System at a post located at $\rm H_{e}$ (kip)
Structural_Capacity_of_Barrier_at_a_Post_Check	$= "OK" \text{ if } R_2 \ge F_t$ "NOT OK" otherwise
Structural_Capacity_o	f_Barrier_at_a_Post_Check = "OK"

Texas A&M Transportatio Institute	SUBJECT: MnDOT G-Barrier on Bridge No. 86812 DN Figure 5-397.107 MASH TL-3 Compliance Assessment
(5a conti.) <u>Bending Capacity of the End Post</u>	about the Longitudinal Axis: M _{spost}
$A_{p.spost} := n_{p.spost} \cdot A_{p1.spost} = 2 \cdot in^2$	Total Area of parapet vertical reinforment in the tension zone of the end post (in^2)
$a_{p.spost} := \frac{A_{p.spost} \cdot f_y}{0.85 \cdot f_c \cdot b_{spost}} = 1.961 \cdot in$	Depth of the Whitney Stress Block (in.)
dp.spost = 15in extreme distant	ce of tension parapet vertical reinforcement in the end post (in.)
$\mathbf{M}_{p.spost} := \mathbf{A}_{p.spost} \cdot \mathbf{f}_{y} \left(\mathbf{d}_{p.spost} - \frac{\mathbf{a}_{p.spost}}{2} \right)$	= 140.196 kip ft Flexural Capacity of the End Post about the Longitudinal Axis when considering only the parapet vertical reinforcment (kip-ft)
Bending Capacity of End Post Considering only to <u>Note:</u> See <i>Figure 1</i> for a visual representation of the rainf A al.spost := 1.56in ² Area of or #11 Bars	
	of anchorage vertical reinforcement in the end post (in.)
$A_{a.spost} = n_{a.spost} A_{a1.spost} = 3.12 in^2$	Total Area of deck anchorage vertical reinforment in the tension zone of the end post (in^2)
$a_{a.spost} := \frac{A_{a.spost} \cdot f_y}{0.85 \cdot f_c \cdot b_{spost}} = 3.059 \cdot in$	Depth of the Whitney Stress Block (in.)
d _{a.spost} := 20.75in Extreme d	distance of tension deck anchorage vertical reinforcement in the end post (in.)
$\mathbf{M}_{\mathbf{a}.\mathbf{spost}} \coloneqq \mathbf{A}_{\mathbf{a}.\mathbf{spost}} \cdot \mathbf{f}_{\mathbf{y}} \cdot \left(\mathbf{d}_{\mathbf{a}.\mathbf{spost}} - \frac{\mathbf{a}_{\mathbf{a}.\mathbf{spost}}}{2} \right) =$	= 299.841 kip ft Flexural Capacity of the End Post about the Longitudinal Axis when considering only the deck anchorage vertical reinforcment (kip-ft)
$M_{s,post} := min(M_{p,spost}, M_{a,spost}) = 140.196$	kip ft Flexural Resistance of the End Post about the Longitudinal Axis when considering the critical reinforcment (k-fl/ft)

 SUBJECT:
 MnDOT G-Barrier on Bridge No. 86812

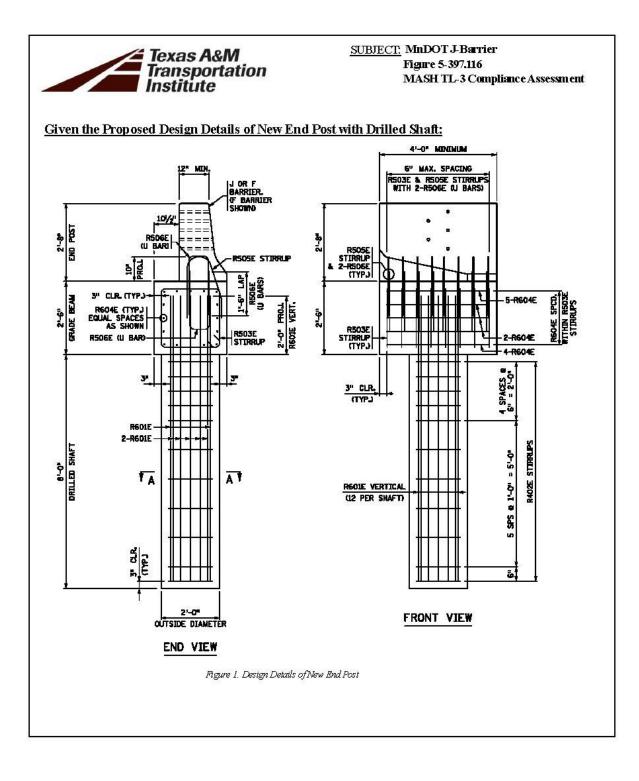
 Figure 5-397.107
 MASH TL-3 Compliance Assessment

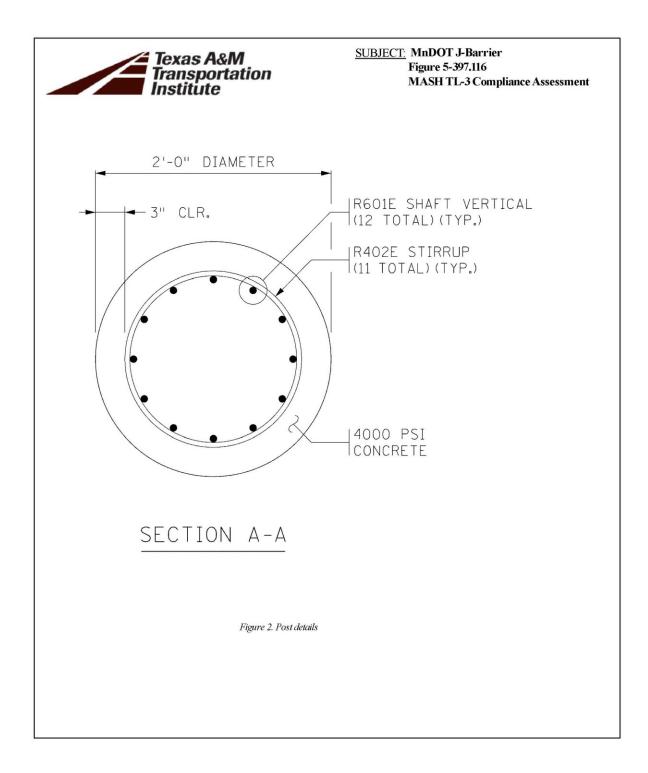
(6) Conclusions:

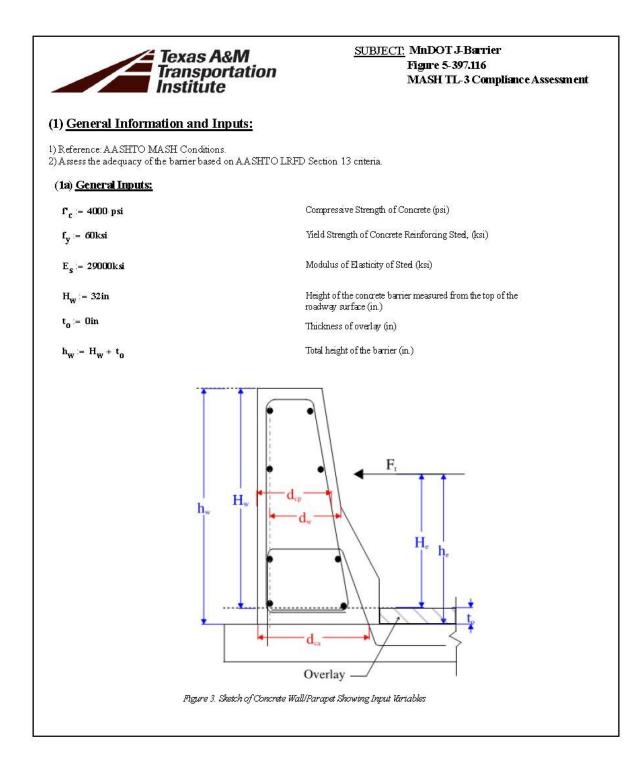
Minimum_Height_of_Barrier_Check = "OK"

Post_Setback_Criteria_Check = "NOT OK"

Snag_Potential_Criteria_Check = "OK"


Structural_Capacity_of_Barrier_at_Midspan_Check = "OK"


Structural_Capacity_of_Barrier_at_a_Post_Check = "OK"


Structural_Capacity_of_End_Post_Check = "OK"

The G-Barrier on Bridge No. 86812 (Fig. 5-397.107) has <u>not satisfied</u> all MASH TL-3 Criteria **APPENDIX E: ANALYSIS CALCULATIONS FOR RETROFIT DESIGNS**

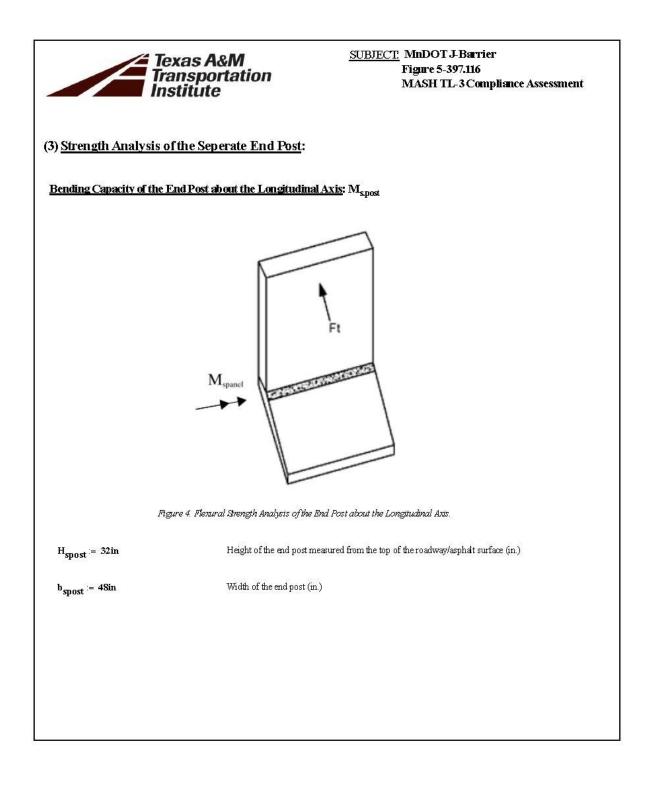
APPENDIX E1: ANALYSIS CALCULATIONS FOR END POST RETROFIT WITH DRILLED SHAFT DESIGN

Text Tran Inst	as A&M sportation itute	<u>SUBJECT</u> MnDOT J-Barrier Figure 5-397.116 MASH TL-3 Compliance Assessmen
o) <u>Concrete Parapet Inputs:</u>		
Typical Parapet Vertical Reinfo	rcement Inputs:	
*** End Post Parameters *****		
$A_{vpl.end} = 0.31in^2$	Area of one parapet vertical re	inforcement leg in the tension zone at joints/ends (in ²)
s _{vp.end} ≔ δin	Spacing of parapet vertical rei	nforcement at joints/ends (in.)
^d cp.end ^{:=} 11.0in	Extreme distance of tension p	arapet vertical reinforcement at joints/ends (in.)
DeckAnchorage Vertical Reinf	orcement Inputs:	
*** End Post Parameters *****		
$A_{val.end} = 0.31in^2$	Area of one deck anchorag	ge vertical rainforcement leg in the tension zone at joints/ends (in ²)
s _{va.end} := 6in	Spacing of deck anchorage	e vertical reinforcement at joints/ends (in.)
d _{ca.end} = 11.0in	Extreme distance of tension	n deck anchorage vertical reinforcement at joints/ends (in.)

SUBJECT: MnDOT J-Barrier Figure 5-397.116 MASH TL-3 Compliance Assessment

(1c) Design Force Inputs:

Test Level	Rail Height (in.)	Ft (kip)	FL (kip)	Fv (kip)	Lt/L1 (ft)	Lv (ft)	He (in)	Hmin (in)
TL-1	18 or above	13.5	4.5	4.5	4.0	18.0	18.0	18.0
TL-2	18 or above	27.0	9.0	4.5	4.0	18.0	20.0	18.0
TL-3	29 or above	71.0	18.0	4.5	4.0	18.0	19.0	29.0
TL-4 (a)	36	68.0	22.0	38.0	4.0	18.0	25.0	36.0
TL-4 (b)	between 36 and 42	80.0	27.0	22.0	5.0	18.0	30.0	36.0
TL-5 (a)	42	160.0	41.0	80.0	10.0	40.0	35.0	42.0
TL-5 (b)	greater than 42	262.0	75.0	160.0	10.0	40.0	43.0	42.0
TL6		175.0	58.0	80.0	8.0	40.0	56.0	90.0


Design Forces for Traffic Railings

<u>References:</u>

- TL-1 and TL-2 Design Forces are from AASHTO LRFD Section 13 Table A13.2-1
- TL-3 Design Forces are from research conducted under NCHRP Project 20-07 Task 395
 TL-4 (a), TL-4 (b), TL-5 (a), and TL-5 (b) Design Forces are from research conducted under NCHRP Project 22-20(2)

TL = 3	Test Level
F _t = 71kip	Transverse Impact Force
$L_t = 4ft$	Longitudinal Length of Distribution of Impact Force
H _e := 19in	Height of Equivalent Transverse Load from top of Asphalt
$\mathbf{h_e} = \mathbf{H_e} + \mathbf{t_o}$	Total equivalent transverse impact height (in.)
H _{min} := 29in	Minimum height of a MASH TL-3 barrier (in.)
$H_{W} = 32 \cdot in$	Height of the concrete barrier measured from the top of the roadway surface/asphalt overlay (in.)

Texas A& Transport Institute	M ation	<u>SUBJECT</u> MnDOT J-Bartier Figure 5-397.116 MASH TL-3 Compliance Assessment	
(2) <u>Stability Criteria:</u>			
H _{min} = 29 in Minimum	1 height of a MASH TL-3 ba	arrier (in.)	
H _w = 32 in Haght of	the concrete barrier measure	ad from the top of the roadway surface/asphalt overlay (in.)	
Minimum_Height_of_Barrier_Check :=	"OK" if H _w ≥ H _n "NOT OKAY" oth	nin Lærwise	
Minimum_F	Height_of_Barrier_Check	k = "OK"	
AASHTO LRED EQUATIONS			

<u>SUBJECT</u> MnDOT J-Bartier Figure 5-397.116 MASH TL-3 Compliance Assessment

(3a-conti.) Bending Capacity of the End Post about the Longitudinal Axis: M_{snost}

Bending Capacity of End Post Considering only the Deck Anchorage Vertical Reinforcement: Note: See *Regure 1* for a visual representation of the reinforcement bars.

 $A_{al.spost} = 0.3 lin^2$

n_{a.spost} := 8

 $A_{a.spost} = n_{a.spost} A_{al.spost} = 2.48 in^2$

 $a_{a.spost} = \frac{A_{a.spost} \cdot f_y}{0.85 \cdot f_c \cdot b_{spost}} = 0.912 \cdot in$

d_{a.spost} := 10.625in

 $\mathbf{M}_{a.spost} := \mathbf{A}_{a.spost} \cdot \mathbf{f}_{y} \cdot \left(\mathbf{d}_{a.spost} - \frac{\mathbf{a}_{a.spost}}{2} \right) = 126.097 \cdot kip \cdot ft$

Area of one anchorage vertical reinforcement leg in the tension zone in the end post $({\rm in}^2)$ (#5 Bars are used)

Number of anchorage vertical reinforcement in the end post (in.)

Total Area of deck anchorage vertical reinforment in the tension zone of the end post (in^2)

Depth of the Whitney Stress Block (in.)

Extreme distance of tension deck anchorage vertical reinforcement in the end post (in.)

Flexural Capacity of the End Post about the Longitudinal Axis when considering only the deck anchorage vertical reinforcment (kip-ft)

Bending Capacity of End Post Considering only the Parapet Vertical Reinforcement: Note: See *Pigure 1* for a visual representation of the reinforcement bars.

Since the same steel reinforcement is provided at the same spacing for both deck and parapet, the bending capacity shall be the same and this calculation is unnecessary

 $M_{p.spost} = M_{a.spost} = 126.097$ kip ft

Flexural Resistance of the End Post about the Longitudinal Axis when considering the critical reinforcment (k-fl/ft)

 $M_{s,post} = min(M_{p,spost}, M_{a,spost}) = 126.097$ kip ft

Texas A&M Transportatio Institute	SUBJECT: MnDOT J-Barrier Figure 5-397.116 MASH TL-3 Compliance Assessment
) <u>Shear Capacity of the Barrier:</u>	
$\lambda = 1.0$	Concrete Modification Factor
T _w := 12in	Fop Width of the parapet (in.)
h _c := 15in	Depth of the shear zone at the critical segment (top most portion) of the barrier (in.)
d _c := 10in	Distance from compression face to the tension reinforcement (in.)
$L_t = 4 \cdot ft$	Length of the distribution of the impact force (ft.)
$f_c = 4 ksi$	Concrete parapet compressive strength (ksi)
β ≔ 2.0	factor for shear; β =2.0 is used for nonprestressed section (AASHTO 5.8.3.4.1)
(4a) <u>Shear Capacity of an End Segment of th</u> $A_{c.end} := \left(L_t + \frac{d_c}{2}\right) \cdot T_w = 636 \cdot in^2$	e Barrier: V_{cend} Concrete Parapet Shear Zone Area of an End Segment of the Barrier (m ²)
$\mathbf{V}_{\mathbf{c},\mathbf{end}} \coloneqq \mathbf{0.0316\beta} \cdot \mathbf{\lambda} \cdot \left[\left(\sqrt{\frac{\mathbf{r}_{\mathbf{c}}}{\mathbf{ksi}}} \right) \cdot \mathbf{ksi} \right] \cdot \mathbf{A}_{\mathbf{c},\mathbf{end}} = 3$	
$V_c = min(V_{c,end}) = 80.39$ kip	Critical Shear Capacity of the Barrier (kip)
F _t = 71 kip	Transverse Impact Force (kip)
Shear_Capacity_of_Barrier_Check := ("OF	S'' if $V_c ≥ F_t$ OT OKAY'' otherwise = "OK"

<u>SUBJECT</u> MnDOT J-Barrier Figure 5-397.116 MASH TL-3 Compliance Assessment

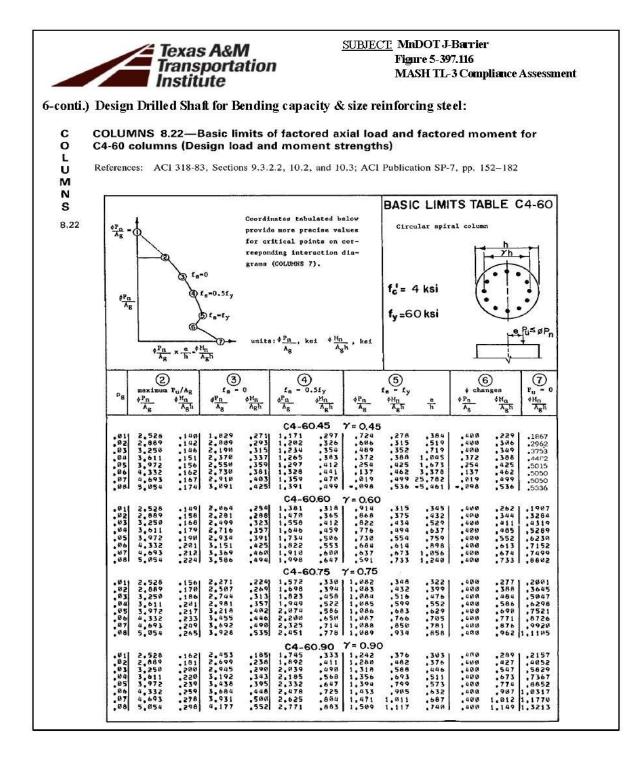
(5) Conclusions of End Post & Barrier Design:

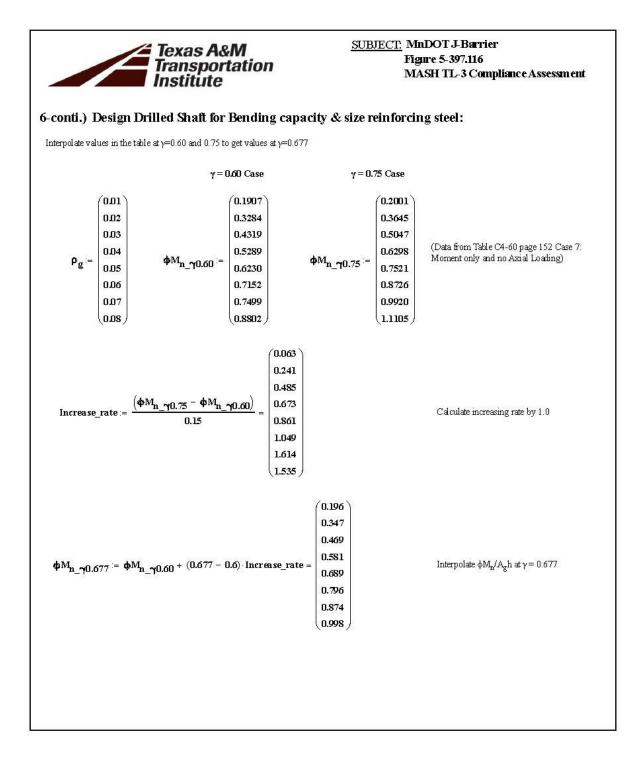
Minimum_Height_of_Barrier_Check = "OK"

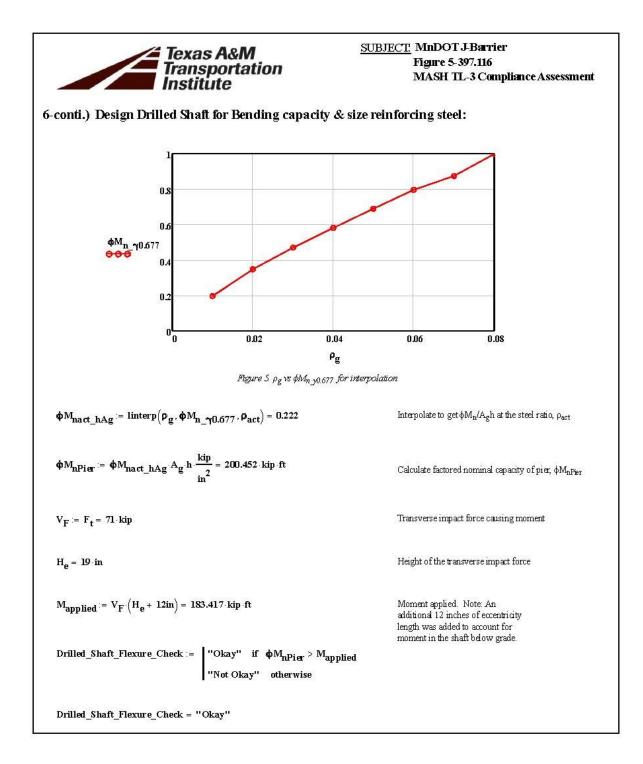
Structural_Capacity_of_End_Post_Check = "OK"

Shear_Capacity_of_Barrier_Check = "OK"

The J-Barrier from Figure 5-397.116 does satisfy all MASH TL-3 Criteria

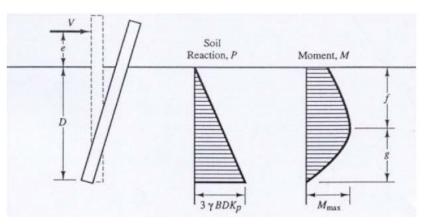



<u>SUBJECT</u> MnDOT J-Barrier Figure 5-397.116 MASH TL-3 Compliance Assessment


6.) Design Drilled Shaft for Bending capacity & size reinforcing steel:

Data from Basic Limits Table C4-60, "Design Handbook Volume 2 Columns" In Accordance with ACI 318-83 page 152, ****** Circular Pier/Column *******

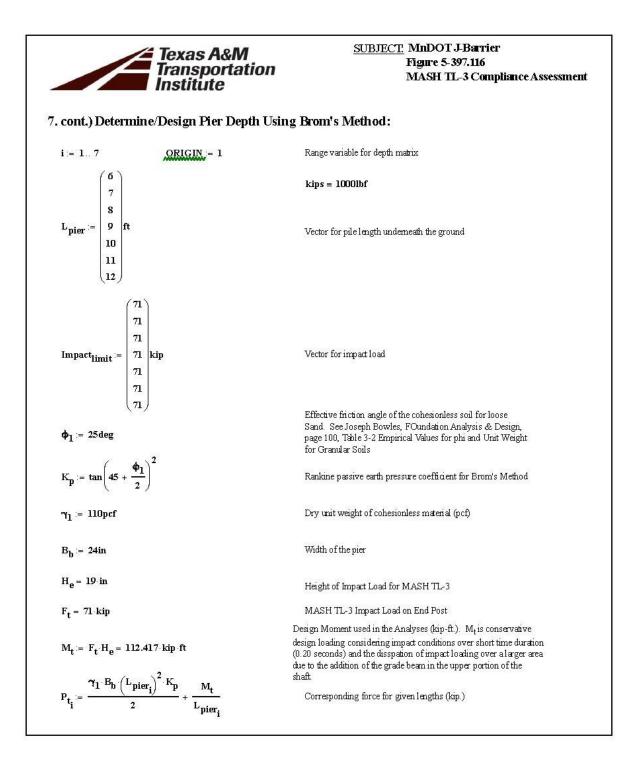
file = 4ksi	Compressive Strength of Concrete
$f_{\rm MA} = 60 \rm ksi$	Yield Strength of rebar
$\mathbf{h} := 24\mathbf{i}\mathbf{n}$	Diameter of pier
cover := 3in	Clear cover
$A_g := \frac{\pi h^2}{4}$	Gross Area (in ²)
φ := 1.0	Strength Reduction Factor
$Tie_{dia} := \frac{4}{8}in$	Tie/Spiral Diameter
$Vertical_{dia} = \frac{6}{8}in$	Size of Vertical Steel
No _{verts} := 12	Number of Vertical Bars
$A_{st} := \frac{\pi \left(\text{Vertical}_{dia} \right)^2}{4} \cdot \text{No}_{verts} = 5.301 \cdot \text{in}^2$	Total Area of Steel Provided (in ²)
$\boldsymbol{\rho}_{act} \coloneqq \frac{\mathbf{A}_{st}}{\mathbf{A}_{g}} = 0.012$	Reinforcement ratio "p"
$\gamma h := h - 2 \cdot cover - 2 \cdot Tie_{dia} - Vertical_{dia} = 16.25 \cdot in$	Distance between the outer layers of reinforcement in a column
$\mathbf{\gamma} := \frac{\mathbf{\gamma}\mathbf{h}}{\mathbf{h}} = 0.677$	Ratio of the distance between the outer layers of reinforcement in a column to the overall depth of the column

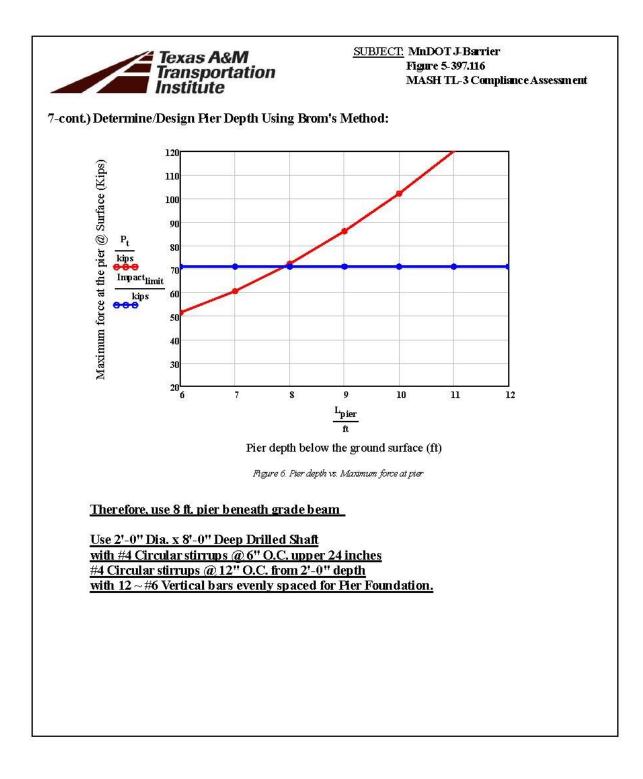


<u>SUBJECT</u> MnDOT J-Barrier Figure 5-397.116 MASH TL-3 Compliance Assessment

7.) Determine/Design Pier Depth Using Brom's Method:

"The Broms method is a simplified limit equilibrium solution that is suitable for simple analysis of relatively short, stiff drilled shafts subjected to lateral shear and overturning moments. The method is most suited to analysis of strength limit states"; Brown, D.A., J.P. Turner, and R.J.Castelli (2010). "Drilled Shafts: Construction procedures and LRFD Design Methods," (NHI Course No. 132014: Geotechnical Engineering Circular No.10, Federal Highway Administration Report No. FHWA NHI-10-016). Washington, DC


Pigure 5. Soil reactions and foundation moments for free-head foundations in cohesionless soil


Requirements of overall moment equilibrium are applied in order to determine the minimum length of the shaft, L_{min} , to satisfy geotechnical strength requirements. At the base of the shaft:

$$\Sigma M_b = 0 = M_t + P_t L_{min} - 3B_b \gamma L_{min} K_P (L_{min} / 2) (L_{min} / 3)$$
$$= M_t + P_t L_{min} - 1/2B_b \gamma (L_{min})^3 K_P$$

where $\Sigma M_b = \text{sum of the moment at the shaft, } P_t = \text{applied shear force at the top; } M_t = \text{induced moment at the top; } L_{max} = \text{minimum length of the shaft satisfying the moment equilibrium; } K_p = \text{Rankine coefficient of passive earth pressure; } B_b = \text{width of the shaft, and } y = \text{unit weight of soil}$

By solving this equation, the minimum required length, L_{min}, of the shaft can be obtained

SUBJECT MDDOT JBarrier
Figure 5.397.116
MASH TL-3 Compliance Assessment

 8 Cont.) Check a development length of rebar in the drilled shaft

 c. Cosing faster (
$$l_0$$
)

 For eposy-costed bars with cover less than 38b or with clear spacing between bars less than 66b; $l_0 = 1.5$
For eposy-costed bars not covered above: $l_0 = 1.2$
 $\lambda_{cf} = 1.2$

 Increasing Factor_Check = $\left(\left(\begin{array}{c} "OK" & if $\lambda_{inc} < 1.7 \\ "NOT OKAY" & otherwise \end{array} \right) = "OK"$

 Derensing Factor_Check = $\left(\left(\begin{array}{c} "OK" & if $\lambda_{inc} < 1.7 \\ "NOT OKAY" & otherwise \end{array} \right) = "OK"$

 • Reinforcement confinement factor (l_0)

 $\lambda_{rc} := 0.4$

 • Derensing Factor_Check [l_0]

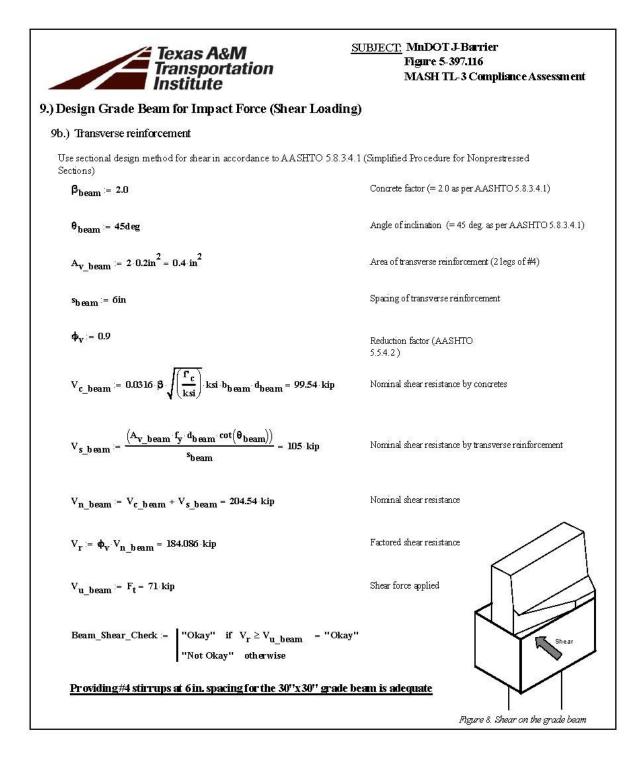
 • Reinforcement confinement factor (l_0)

 $\lambda_{rc} := 0.4$

 • Excess reinforcement factor (l_0)

 Where analorage or development for the full yield arength of reinforcement is not required, or where reinforcement in factor (l_0)

 • Excess reinforcement for the full yield arength of reinforcement is not required, or where reinforcement in the could number is in excess of this required by analysis:


 $i_0 = 1.0$
 Use 1.0 for the conservative design:

 $i_0 = -1_{obs} \left(\frac{\lambda_1 + \lambda_1 + \lambda_2 + \lambda_2}{\lambda_2} \right) = 25.92$ in
 Use 24 in development length shall be taken as:

 Use 24 in development length; This is slightly less than what is required based on AASHTO:

 Howeveer, this value is acceptable considering the input parameters and impart loading conditions.$$

Texas A&M Transportation Institute	<u>SUBJECT:</u> MnDOT J-Barrier Figure 5-397.116 MASH TL-3 Compliance Assessment
9.) Design Grade Beam for Impact Force (Shear Lo	ading)
9a.) Longitudinal reinforcement	Assume impact force @very corner of barrier
$F_{beam1} := F_t = 71 \cdot kip$	Eccentricity of 12 inches used ((4 feet grade beam width - 2 feet shaft diameter)/ 2 sides)
$M_{u_beam} := F_{beaml} \cdot 12in = 71 \cdot kip \cdot ft$	Corresponding moment @very corner of barrier
$A_{beam} = 5.0.2in^2$	5 ~ #4 Honizon tal Bars each side of grade beam for bending about the vertical axis due to the impact load applied at the edge of the barrier/grade beam (transverse loading = 71 kips @ 12 inches)
b _{b eam} := 30in Width of the grade beam	
φ _f := 0.9	Reduction factor (AASHTO 5.5.4.2)
d _{b eam} := 30in - 3in - 0.5in25in = 26.25 in	Effective depth of the grade beam
$a_{beam} := \frac{A_{beam} f_y}{0.85 f_c b_{beam}} = 0.588 in$	Depth of the equivalent compression block
$M_{n_beam} := A_{beam} \cdot f_y \cdot \left(d_{beam} - \frac{a_{beam}}{2} \right) = 129.779 \cdot kip \cdot ft$	Nominal flexural resistance
$M_{r_beam} := \phi_{f'} M_{n_beam} = 116.801 \text{ kip ft}$	Factored flexural resistance
Beam_Flexure_Check := "Okay" if $M_{r_beam} \ge M_{u_beam}$ "Not Okay" otherwise	am
Beam_Flexure_Check = "Okay" <u>Therefore, providing 5 - #4 bars on each side of the grade</u> b	beam is adequate
	Figure 7. Moment on the grade beam

APPENDIX E2: Analysis Calculations for HSS Tube Section Retrofit

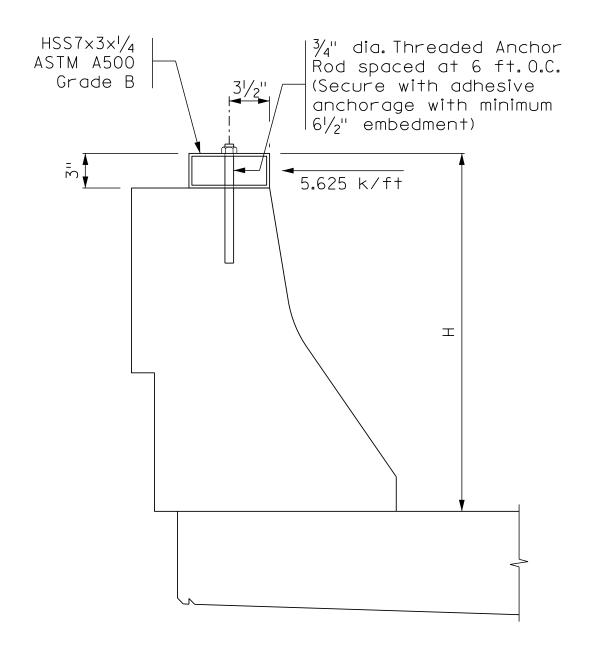


Figure E2-1 HSS Tube Retrofit Details.

Design Loads		
<u>Note</u> : Assuming that the load is distributed at the midspan of a rail section supported by two anchor rods. Assuming the critical condition of a single span, simply supported beam (See Figure B2).		
L _{rod} =	6	Anchor rod spacing (ft)
w _t =	5.625	Distributed load acting at the top of the barrier system (kip/ft)
L _t =	4	Length of the distributed load, w_t (ft)
R _v =	11.25	Shear force acting on each anchor rod (kip)
M _u =	22.5	Maximum moment force acting on the rail (kip-ft)

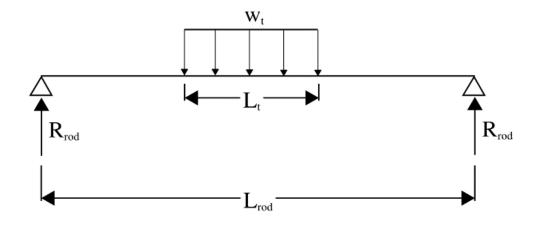


Figure E2-2 Critical Condition Load Application on Steel Rail.

Anchor Rod Capacity		
$A_{LPS} =$	125	Area of Lateral Punching Shear (LPS) caused by a single anchor rod (\mbox{in}^2) - See Figure B3
f _c =	4000	Concrete Compressive Srength (psi)
R _{rod.LPS} =	15.81	Lateral Punching Shear (LPS) resistance caused by a single Anchor Rod (kip) = $2 A_{LPS}*SQRT(fc)$
d _{rod} =	0.75	Diameter of Anchor Rods (in.)
F _{u.rod} =	125	Ultimate Strength of Anchor Rods (ksi)
A _{rod} =	0.442	Area of a Single Anchor Rod (in ²)
R _{rod.v} =	24.85	Shear Strength of a single Anchor Rod (kip) = $0.45A_{rod}F_u$
R _{rod} =	15.81	Limiting ("worst case") capacity of a single Anchor Rod (kip)
R _v =	11.25	Shear force acting on each Anchor Rod (kip)
СНЕСК	ОК	OK if: $R_{rod} \ge R_v$

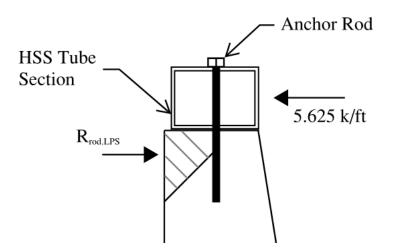
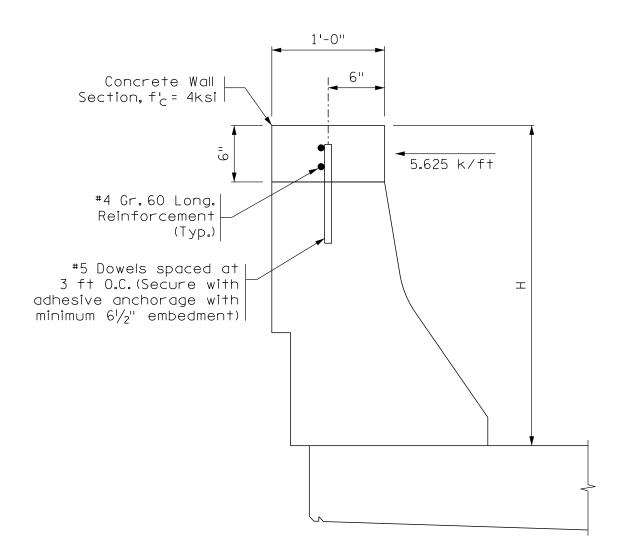



Figure E2-3 Lateral Punching Shear (LPS) Failure Mechanism.

Steel Rail Capacity		
Z _r =	9.22	Plastic Section Modulus of Steel Rail about the bending axis (in ³)
F _{yr} =	46	Yield Strength of Steel Rail (ksi)
M _r =	35.34	Plastic Moment Strength of the Steel Rail (kip-ft) = $Z_r F_{yr}$
$M_u =$	22.50	Maximum moment force acting on the rail (kip-ft)
СНЕСК	ОК	OK if: $\mathbf{M}_{\mathbf{r}} \ge \mathbf{M}_{\mathbf{u}}$

APPENDIX E3: Analysis Calculations for Concrete Wall Section Retrofit

Note: Roughen and clean existing concrete. Apply approved bonding agent such as Shep-Weld or equivalent concrete bonding agent prior to new construction as per manufacturers specifications.

Figure E3-1 Concrete Wall Section Retrofit Details.

Design Loads		
<u>Note</u> : Assuming a one-way shear failure mechanism of the concrete wall retrofit. Considering the critical condition of the load distributed at an end section of the concrete wall retrofit.		
L _{rod} =	3.0	Anchor bar spacing (ft)
d _c =	6.625	Distance from compression face of concrete wall to the tension reinforcement (in.)
w _t =	5.625	Distributed load acting at the top of the barrier system (kip/ft)
L _t =	4	Length of the distributed load, w_t (ft)
L _c =	4.28	Length of the one-way shear zone resulting from the distributed load acting at an end segment (ft)
R _v =	22.5	Shear force acting on the concrete wall retrofit (kip)

Anchorage Capacity		
A _{LPS} =	275	Area of Lateral Punching Shear (LPS) caused by the anchor bars within the applied distributed load (in ²) - See Figure C2
f _c =	4000	Concrete Compressive Srength (psi)
R _{bar.LPS} =	34.79	Lateral Punching Shear (LPS) resistance of the Anchor Bars in the one-way shear zone $(kip) = 2 A_{LPS}*SQRT(fc)$
d _{bar} =	0.625	Diameter of Anchor Bars (in.)
n _{bar} =	2	Number of Anchor Bars in the one-way shear zone
F _{u.bar} =	90	Ultimate Tensile Strength of Anchor Bars (ksi)
A _{bar} =		Area of a Single Anchor Bar (in ²)
R _{bar.v} =	24.85	Shear Strength of the Anchor Bars in the one-way shear zone (kip) = $0.45 n_{bar} F_{u,bar} A_{bar}$
R _{bar} =	24.85	Limiting ("worst case") capacity of the Anchor Bars in the one-way shear zone (kip)
$\mathbf{R}_{v} =$	22.50	Shear force acting on the concrete wall retrofit (kip)
CHECK	ОК	OK if: $R_{bar} \ge R_v$

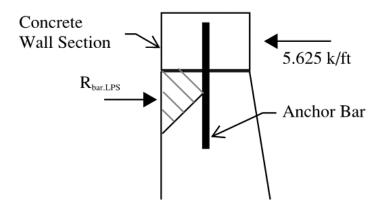


Figure E3-2 Lateral Punching Shear (LPS) Failure Mechanism.

Concrete Wall Capacity		
T _w =	12	Top Width of the Concrete Wall (in)
h _c =	б	Height of the Concrete Wall (in)
A _{c.v} =	687.8	Concrete Wall area resisting one-way shear (in ²) = $L_c T_w + T_w h_c$
V _e =	86.99	Shear Capicity of the Concrete Wall (kip) = $2 A_{cv}$ *SQRT(fc)
$\mathbf{R}_{v} =$	22.50	Shear force acting on the concrete wall retrofit (kip)
CHECK	ОК	OK if: $V_c \ge R_v$