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Executive Summary 

Background and Approach 

Traffic information plays a vital role in the operation of intelligent traffic systems. Traditional traffic 
detectors, such as loop detectors and video detectors, are installed at fixed locations and need a 

high maintenance fee. The development of vehicle‐to‐vehicle (V2V) and vehicle‐to‐infrastructure 

(V2I) technologies enable vehicles to share their travel messages with other vehicles or the road‐
side infrastructure with a high frequency. The most frequent and basic group of data broadcasts is 
called the Basic Safety Messages (BSMs). BSMs were originally proposed for some safety applica‐
tions to reduce accident rates on the road, such as alert drivers about the occurrence of extreme 

events. In this project, BSMs are used as the data source for traffic state estimation (including 

density, speed, and flow), which could replace traditional detectors on the road. 
In this project, the research team proposes a real‐time traffic state algorithm using BSMs and 

tests its accuracy with BSMs generated from microscopic traffic simulation and radar data. The 

research team mainly completes the following tasks: 

• Task 1: Data collection and emulated BSM generation. The research team prepares two 

types of BSM data. One type of BSMs is generated by a calibrated microscopic traffic sim‐
ulation model, and the second type of BSMs is generated from radar data collected in the 

field 

• Task 2: Develop BSM Traffic State Estimator using mesoscopic flow model. The research 

team creates a traffic state estimation model based on the Kalman filter (KF) technique and 

the cell transmission model (CTM). 

• Task 3: Accuracy analysis. The research team tests the accuracy of the developed algorithm 

using the data collected in Task 1. 

• Task 4: Improve TSE accuracy using existing sensor data. The research team explores how 

much the sensor data at link entry can improve the algorithm accuracy. 

• Task 5: Develop functional specifications for network‐wide BSM‐based traffic monitoring. 
The research team develops the functional specification for the future traffic monitoring 

system. 

• Task 6: Development of BSM Traffic Monitoring system prototype. The research team de‐
velops a functional prototype of the BSM traffic monitoring system. The traffic monitoring 



system is composed of data collection, data transmission, and data processing modules, 
which is able to upload BSMs to servers, download BSMs from servers, and conduct real‐
time traffic estimation. 

Key Findings 

There are some findings regarding the performance of the algorithm. 

• The accuracy of speed estimation is much higher than the density estimation and flow esti‐
mation. 

• The accuracy of density estimation and flow estimation cannot outperform traditional loop 

detectors. 

• If the algorithm is applied to a large network, enough computing power needs to be pre‐
pared to guarantee the real‐time operation of the traffic monitoring system. 



1 Introduction 

Traffic information plays an important role in the operation of an intelligent traffic system. Traffic 
models need adequate information to calibrate their parameters so that the traffic management 
and control system can react to the variation in traffic conditions and maintain the efficiency of 
traffic networks. Traffic information is collected by traffic detectors, such as loop detectors and 

video detectors. These detectors are installed at specific locations and are hard to maintain. For 
example, the loop detector only collects data at specific locations and it needs to be embedded 

in the pavement. The video detector should be installed at high buildings. Its detection is greatly 

affected by the weather and light condition, and the processing of video image data requires a lot 
of time and storage. The accuracy of video data is also limited by the location of the cameras. 

The Connected Vehicle Safety Pilot Program initialized by the U.S Department of Transporta‐
tion (USDOT) aims to test safety applications that use dedicated short‐range communications 
(DSRC) in real‐world scenarios, which include vehicle‐to‐vehicle (V2V) and vehicle‐to‐infrastructure 

(V2I) technologies. In this program, the Safety Pilot Model Deployment used about 3,000 vehicles 
equipped with wireless devices to create a test field with V2V and V2I communications, with which 

a vehicle can share its travel messages with other vehicles or the road‐side infrastructure with a 

high frequency, and the most often and basic group of data broadcast is called the Basic Safety 

Messages (BSMs). The major information included in BSMs is shown in Table 1. The main data 

relevant to this paper are the position and velocity of each vehicle. Temporal IDs of vehicles are 

updated periodically to preserve personal privacy. The position of the vehicle is identified by the 

Global Positioning System (GPS) set of coordinates. 
BSMs were originally proposed for some safety applications to reduce the accident rate on 

the road. The first application is to alert drivers about the occurrence of extreme events. Helping 

drivers to notice dangerous driving environments helps them react to extreme events in advance 

and can effectively avoid traffic accidents. Liu (25) proposed a methodology to detect high accel‐
eration, and Khattak et al. (21) developed a model to distinguish normal or anomalous driving 

behaviors, which was important for hazard anticipation and notification systems. The second ap‐
plication is a collision warning system. A forward collision warning system detects the speed of the 

preceding vehicle and the distance to the preceding vehicle. The driver of the rear vehicle will be 

warned if the current speed is too high or the vehicle is too close to the preceding one. With V2V 

communication, a cooperative collision warning system can provide warnings or awareness dis‐
plays for drivers based on the driving states of vehicles that are either in sight of or out of the sight 
of the current vehicle (33). The third application is a red light violation warning. When the red 

light violation warning system at an intersection detects that a vehicle approaching the intersec‐
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tion may potentially violate the red light, the system will send warnings to the in‐vehicle device to 

notice the driver in the vehicle. The cooperative intersection signal violation warning system was 
proven in studies to reduce red light violations and intersection collisions using in‐vehicle warning 

devices (30). There are other safety applications based on BSMs that are developed and tested 

to reduce the crash rate at urban roads or freeways, such as lane change warning and work zone 

warning. 

Table 1: Major vehicle travel information included in BSMs 

index information 

1 Temporal ID 

2 Timestamp 

3 Position 

4 Speed 

5 heading 

6 Acceleration 

7 Brake system status 
8 Vehicle size 

9 SteeringWheel Angle 

10 Positional Accuracy 

Most traffic safety applications with BSMs focus on assisting each driver individually. These 

applications help drivers become aware of the potential danger and make them take measures 
to prevent traffic accidents. Unlike these applications, traffic controls applied to an entire road 

section, such as ramp metering or variable speed limits, control traffic flows instead of individ‐
ual vehicles. These traffic controls require knowledge of the traffic state because the actual traffic 
condition determines the control applied to the road. Traditional traffic detectors, such as loop de‐
tectors and video cameras, are widely used for collecting data for traffic state estimation, but they 

have some inevitable drawbacks. Loop detectors installed in pavement are frequently broken and 

need regular maintenance. Camera detectors have low accuracy in adverse weather conditions. 
Neither detector can cover the entire road section because they are installed at fixed locations. 
The measurement accuracy decreases at large distances from detectors. Information from BSMs 
provides us the probability of estimation traffic conditions for the entire road without the limita‐
tions of location and installation of traffic detectors. BSM data is similar to the probe vehicle data, 
which is collected by running vehicles equipped with data collection facilities. Some probe vehi‐
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cles are installed with video cameras that enable them to measure the spacing between vehicles. 
However, it is costly for probe vehicles to reach a high penetration rate. Probe vehicles require 

drivers and are not freely available in normal traffic. Unlike probe vehicles, vehicles with V2V or 
V2I communication modules can reach a high market penetration as they are supported by the 

Department of Transportation. As the market penetration of connected vehicles becomes larger, 
BSM data can cover a large area, and traffic state estimation using BSMs will have a high accuracy. 

In this project, the project team proposed a method for traffic state estimation using BSMs 
based on the Kalman filter technique. The estimator computed traffic measurements (density, 
speed, and flow) on road sections without the need of loop detectors. At first, the estimator was 
tested with BSMs generated from a network built using the cell transmission model (CTM). Then 

BSMs generated from two freeway sections in a microscopic simulation model in traffic simulation 

package AIMSUN and from radar data collected in the field were used to test the accuracy of the 

estimator. To explore whether the estimation accuracy can be improved given accuracy input flow 

measurements, the estimator was tested when the input flow was provided. After that, the project 
team explored the capability of this algorithm applying to a large‐scale network and developed a 

traffic monitoring system that is able to conduct traffic state estimation using BSMs stored in a 

remote server. 
The structure of this report is as follows: Chapter 2 summarizes existing studies related to 

traffic state estimation. Chapter 3 introduces the methodology used for traffic state estimation in 

this study. Chapter 4 shows the experiment using the CTM‐based simulator. Chapter 5 illustrates 
the process of preparing databases with BSMs generated from a microscopic simulation model. 
Chapter 6 shows the experiment on two freeway sections in AIMSUN. Chapter 7 presents the 

work for preparing BSMs generated from radar data collected on freeways. Chapter 8 shows the 

experiment using BSMs generated from radar data collected from a short freeway section in the 

field. Chapter 9 shows the experiment when the measurement of input flow is given. Chapter 
10 illustrates the structure of the traffic monitoring system and its performance on a large scale 

network in AIMSUN. 
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2 Literature review 

Traffic state estimation is the process of calculating actual values of traffic state variables given 

traffic data with errors or data that only covers part of vehicles in the network. The traffic state 

variables include flow, density, and speed. 
The data source for traffic state estimation evolves with the development of communication 

technologies in traffic systems. There are studies using loop detector data (43; 39; 42; 10), probe 

vehicle data (27; 46; 13; 35), and multiple data resources from both loop detectors and probe 

vehicles (22; 9; 26). Probe vehicle data differs among studies. In some studies, probe vehicles are 

only equipped with GPS devices to record the geo‐position (46) of vehicles while probe vehicles in 

other studies are also equipped with cameras and are capable of measuring distances to preceding 

vehicles (35). 
Most studies using the probe vehicle data focus on estimating only one traffic state variable, 

such as speed (45), density (17; 35), or travel time (27; 16; 12; 48), while studies using loop detec‐
tor data usually estimate multiple traffic state variables (44; 42). Work et al. (45) derived a velocity 

model based PDE on the Lighthill‐Whitham‐Richard PDE. A velocity cell transmission model (CTM‐
v) was built after integrating the new PDE with the derived velocity model. The Ensemble Kalman 

filtering (EnKF) technique was used to estimate the velocity based on the GPS data. The veloc‐
ity estimation was validated with microsimulation data and historical velocity data and proven to 

have less error than the averaging scheme. Hellinga et al. (16) estimated average link travel times 
with low‐frequency anonymous probe car data. This travel time allocation problem was solved by 

a travel time decomposition method which was able to compute the congestion time and the stop‐
ping time on a link. The result showed that this method improved the accuracy of travel time esti‐
mation by 40% on average with a frequency of one‐minute compared with the baseline method, 
which proportionally assigned the travel time on each link according to its free flow travel time. 
Herring et al. (18) utilized taxi trajectory data to estimate arterial traffic conditions. A fleet of 500 

taxis was used to collect GPS data with a frequency of one minute. An expectation maximization 

algorithm was developed to estimate parameters in a Coupled Hidden Markov Model (CHMM). 
Then CHMM was used for the prediction of link travel time. The result showed that this model 
had a higher accuracy than the baseline model by 35%. Zhu et al. (48) proposed an algorithm 

to predict the travel times for urban arterial roads based on Kalman filtering using the probe car 
data. The hierarchical clustering was used to estimate the parameters in the model. The results 
showed that the proposed algorithm could be applied to provide real‐time travel time prediction 

services. Most probe vehicles cannot directly obtain traffic density and flow measurements on the 

road because probe vehicles cannot cover 100% vehicles on the road, which makes it difficult for 
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studies with probe vehicles to estimate traffic densities and traffic flows than studies using loop 

detector data. 
Based on the methodology used for traffic state estimation, existing studies can be catego‐

rized into model‐driven and data‐driven studies. Most model‐based studies estimate traffic states 
based on calibrated traffic flow models which provide macroscopic relationships between traf‐
fic state variables and capture traffic flow dynamics on the road. Some studies use first‐order 
traffic flow models, in which the flow‐density relationship can be illustrated by different traffic 
fundamental diagrams, such as triangular fundamental diagram (40; 35), trapezoidal fundamen‐
tal diagram (36), and Greenshields flow function (45). Other studies use second‐order traffic flow 

models, such as METANET (43). Wang et al. (43) proposed a general approach to estimate the traf‐
fic state of a freeway in real‐time based on an extended Kalman filter. A macroscopic traffic flow 

model was used as the prediction step in the Kalman filter while loop detector data supported the 

measurement step. Several simulations were conducted to test the model accuracy and the effect 
of parameter estimation on traffic state estimation. The study emphasized the importance of pa‐
rameter estimation for accurate traffic state estimation and the model was sensitive to the initial 
values of the model parameters. The results showed that a well‐designed traffic state estimator 
along with real‐time model parameter estimation can produce estimation with high accuracy. A 

few studies proposed parameter estimation methods (34; 41) while other studies directly used 

traffic flow models calibrated using other data source (27). 
A data assimilation technique called Kalman filter (19) is widely used in existing model‐driven 

studies for traffic state estimation. It is a recursive algorithm that integrates measurements and 

model‐based predictions. Both of them contain errors and other uncertainties. Kalman filters 
are able to generate an estimation that is more accurate than both individual measurement and 

prediction values. There are different types of filters used for traffic state estimation, such as 
extended Kalman filter (40; 44), ensemble Kalman filter (45), and particle Kalman filter (20). They 

differ in their assumptions about the system. For example, whether the system dynamic is linear 
or whether the model function is derivable. 

Unlike model‐driven studies, for most data‐driven studies of traffic state estimation, traffic 
flow models are not needed. The relationship between the target traffic state and the available 

data source are captured by statistical models based on historical data. Liang et al. (23) created a 

deep generative adversarial architecture (GAA) for network‐wide spatial‐temporal traffic‐state es‐
timation. GAA mainly used an artificial neural network (ANN) to capture the correlation between 

the input and the output but the relationship between traffic state variables cannot be directly de‐
rived from this model. Other models used in data‐driven study for traffic state estimation include 

a Coupled Hidden Markov Model (CHMM) (18) and a multi‐layer ANN (47). 
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In this project, we use a similar methodology to previous model‐driven approaches. CTM, a 

first‐order traffic flow model, is used to represent traffic dynamics. Kalman filter technique is used 

to estimate the three traffic state variables of traffic flow, density, and speed. Unlike previous 
studies, BSM data is the only data source used for estimation in this study, no detector data is 
used. Besides, existing studies that estimate traffic density often have measurements of density, 
but this study only has measurements of speed. 
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3 Methodology 

In this section, a Kalman filter is used to estimate traffic states. Kalman filtering (19) is an algorithm 

that integrates measurements and model‐based predictions. Both of them contain errors and 

other uncertainties. The Kalman filter is able to generate an estimation that is more accurate 

than any of these single measurements or predictions. The Kalman filter iterates between the 

measurement step and the prediction step. 

3.1 Cell Transmission model 

In the prediction part, the cell transmission model is applied to model the dynamics of traffic 
flow. CTM is a discretization of the Lighthill‐Whitham‐Richards partial differential equation (24; 31) 
using a Godunov scheme. The parameters in CTM are based on a fundamental diagram, such as 
triangular or trapezoidal diagrams. Figure 1 shows a triangular fundamental diagram of traffic flow 

q as a function of density k. It includes four parameters: the capacity Q, the free‐flow speed vf , 
the jam density K, and the backward shockwave speed w. In the cell transmission model with a 

time step size of ∆t, the road section was divided into several cells with cell length ∆L = ∆t · vf . 
The cell density for each cell can be updated using equation (1). The cell density ni(t) mentioned 

in this report is not the percentage of time when a loop detector is occupied but represents the 

number of vehicles in a cell i at a time step t, which equals the product of density and the cell 
length. In equation (1), the density n of cell i at time t + 1 equals the density of cell i at time t 

minus the exiting flow from the current cell, yi, plus the entering flow from the previous cell, yi 1. −

ni(t + 1) = ni(t) − yi(t) + yi−1(t) (1) 

Figure. 1: Trapezoidal fundamental diagram 
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Equation (2) shows how the inter‐cell flow is calculated. 

w 
yi(t) = min{ni(t), Q∆t, (Ni+1 − ni+1(t))} (2)

vf 

There are three terms in the minimization function of equation (2). The first term ni(t) is the 

density of cell i at time t. The second term, Q∆t, is the product of the capacity and the time step 

size, which is the largest value of the inter‐cell flow. The third term w (Ni+1 vf 
− ni) includes the 

backward shockwave speed w, the free flow speed vf , and the maximum density N in cell i + 1. 
The maximum density N is calculated using the jam density K and the cell length ∆L, which is 
N = K × ∆L. The third term represents the available space in the next cell. 

3.2 The Structure of the Kalman Filter 

In the Kalman filter with CTM, BSM data including vehicle locations and speeds can be processed 

to obtain relevant traffic state information such as density, flow, and speed. The basic equations 
of the Kalman filter are shown in this section. 

The prediction step in equation (5) is made up of the state vector N(t) and the control vector 
Y(t). The state vector includes the densities of all road segments. The reason why only the density 

is included in the state vector is that other traffic state variables, such as the flow and the speed, 
can be calculated using the density based on the fundamental diagram. The calculation of den‐
sities requires the knowledge of incoming flows and outgoing flows, which is included in control 
vector Y(t) in equation (4). The first element y0(t) is the input flow to the road, which is assumed 

to be the measured flow for equipped vehicle yp0 (t) divided by the penetration rate r.  
n 1(t) n

)  2(t) N(t =  .  (3) . .  

ni(t)  
y0(t)  y 1(t) Y(t) =  (4)..    .  

yi(t) 

The relation between the state vector N(t) and the control vector Y(t) can be written as the form 
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in equation (5). 
N(t + 1) = ArN(t) + BrY(t +  1) + Qr 

∗ (5) 

In equation (5), the state vector at time t + 1 is updated with the state vector at time t and the 

control vector at time t + 1. Ar is an identity matrix. Br is a matrix with i rows and i + 1 columns 
with all elements equal to −1, 0 or 1. Its form is shown in equation (6). The matrices Ar and Br are 

derived from the relation between the state vector and the control vector shown in equation (1). 
Matrix Qr 

∗ is the error term for the prediction.  
1 −1 0 0 . . . 0 0  0 1 −1 0 . . . 0 0  Br = 0 0 1 1 . . . 0 0  (6) .. . .

−
. .  . . . .  . . . .. . . .. ..  

0 0 0 0 . . . 1 −1 

Equation (7) shows the measurement step of the Kalman Filter. N̂(t) is the measurement of densi‐
ties. Cr is an identity matrix. Rr is the error term related with measurement, such as measurement 
errors from detectors. In this study, the relation between the measured density for all vehicles N̂ 

and the measured densities for equipped vehicles Np can be represented by function G. 

N̂(t) = C G (N̂ r p(t), V̂ p(t)) + Rr (7)  N̂ p(t)  V̂   
G (N̂ ^  , p(t) 0.9v

 f
p(t), V  

p(t)) = r
≥

(8)  wK∆l , V̂ ^  p(t) < 0.9vVp(t)+w f

In equation (8), when the measured average speed of probe vehicles V̂ p(t) is greater or equal to 

0.9 times the free‐flow speed, the traffic is considered uncongested. Then the measured density 

is the measured number of equipped vehicles N̂ p(t) divided by the assumed penetration rate r. 
Otherwise, the road is congested. The density is calculated by finding the corresponding value 

on the fundamental diagram using the measured speed of equipped vehicles. If no speed data is 
available at the current time step, the measurement at the previous time step is used. To make 

the fundamental diagram accurately represent the dynamics of traffic flow on the road, the values 
of capacity Q, the free‐flow speed vf, and the jam density K should be calibrated in advance or 
updated in real‐time. The parameter calibration will be discussed in section 4. The covariance 

matrix Pr can be updated using equation (9). As matrix Ar is a identity matrix, matrix Pr can be 

9 



calculated by adding up matrix Ar and the covariance matrix Qr 
∗ . 

Pr(t + 1) = ArPr(t)A | 
r + Qr 

∗ (9) 

The Kalman Gain Kr, which serves as the weight of measurement over prediction in the estimation, 
is calculated by equation (10). 

Kr(t + 1) = Pr(t |+ 1|t)C  
r [CrPr(t + 1|t)C | 

r + R 1
r]
−  (10) 

Using Kalman Gain Kr, the values of predictions and measurements can be integrated and the 

covariance matrix Pr can be updated, as shown in equations (11) and (12). 

N(t + 1|t + 1) = N(t + 1|t) + Kr(t + 1) [N̂(t + 1) − CrN(t + 1|t)] (11) 

Pr(t + 1|t + 1) = Pr(t + 1|t) − Kr(t + 1)CrPr(t + 1|t) (12) 

With the segment length ∆L, the density can be converted to density ki(t) = ni(t)/∆L. With 

the value of k, the flow rate and speed can also be estimated. 

3.3 Parameter Calibration 

CTM relies on accurate fundamental diagram parameters, which vary depending on the road and 

the weather conditions. It is necessary to estimate parameters to make them reflect the traffic 
flow dynamics on the target road. These parameters include the capacity Q, the free‐flow seed 

vf, the backward shockwave speed w, and the jam density K. To simplify the process of parameter 
calibration, the value for the jam density K is first calculated by the average car length ℓ, as shown 

in (13). Then the parameter calibration will not update the value for the jam density. 

1 
K = (13)

ℓ 

It is assumed that all road segments on a road with the same number of lanes share the same 

parameters in the fundamental diagram. The parameter calibration uses a lower frequency to 

update the values of parameters than the traffic state estimation process mentioned in section 3. 

3.3.1 Measurement of Parameters 

The values of the free‐flow speed, the capacity, and the shockwave speed should be measured 

from the BSM data. 
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If the road is congested during the previous time step, and the average speed at the current 
time step is much larger than that in the previous time step, then the current average speed, v̄(t), 
will be used as the new estimation of the free‐flow speed. For BSM data, it is hard to directly 

get measurements of the capacity and the shockwave speed because BSM data only includes the 

density and flow related to equipped vehicles. However, it is assumed that the average speed 

of equipped vehicles can represent the speed for the entire road segment in the road section. If 
there is no huge drop in the measured capacity, the free‐flow speed can be extracted by getting 

the larger value between the average speed at the current time and the value of free‐flow speed at 
the previous time step, as shown in equation (14). If a drop in the measured capacity is observed, 
the measured value for free‐flow speed can be decreased, as shown in equation (15). 

v̂f(t) = max (v̂f(t − 1), v̄(t)) (14) 

v̂f(t) = v̄(t) (15) 

In the triangular fundamental diagram, the traffic has congested and uncongested conditions. 
When the average speed v̄(t) is greatly less than the free‐flow speed vf, the traffic is congested. 
Otherwise, the road is uncongested. When the road is congested, it is possible to estimate the 

backward shockwave speed ŵ using equation (16). ℓ is the average car length, and τ is the aver‐
age reaction time of drivers. The time when a shockwave can be observed is not common so it is 
difficult to get a good estimation of the average reaction time of drivers. If τ is not available, the 

headway between two consecutive vehicles is used. The measured value for capacity ˆ Q can be 

calculated based on the value of the shockwave speed, as shown in (17). 

ℓ 
ŵ = (16)

τ ( )
1 1 

Q̂ = + K (17)
vf ŵ 

When the road is uncongested, the capacity is estimated first. Its value can be estimated with 

equation (18). In equation (18), min ¯(h) represents the smallest headway in the section. The 

capacity is the largest number of vehicles that can pass a road section in an hour, which is equal 
to the number of smallest headways in an hour. A smaller headway corresponds to a larger flow 

rate and capacity. Then the backward shockwave speed ŵ can be calculated based on the value 

of the capacity, as shown in (19). When the market penetration of equipped vehicles is low, the 

case in which one equipped vehicle follow another equipped vehicle should be found to extract 
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the headway. If there is no such case in the current time step, the value of the capacity will not 
be updated. 

ˆ 3600 
Q = (18)

min ¯(h) 

Kvf
ŵ =  (19)

Q̂vf  K −

3.3.2 The Structure of Kalman Filter in Parameter Calibration 

In this study, the update of parameters also uses a Kalman filter structure. F(t) is the vector of 
parameters at time t.  

Q(t)  F(t) =  vf(t)  (20)
w(t) 

Equation (21) shows the updating process of these three parameters. Ac is an identity matrix 
because we assume that the prediction of parameters at time t+1 is just the values of parameters 
at time t, and the parameter value is a random walk. 

F(t + 1)  = AcF(t) + Qc 
∗ (21) 

The measurement vector ̂F is consisted of the measurements of the capacity, the free‐flow speed 

and the backward shockwave speed. The method of getting the measurement is mentioned in 

section 3.3.1.  
Q̂(t)  F̂(t) =  v̂f(t)  (22)
ŵ(t) 

Kalman Gain is used to integrate these two parts, which is calculated by equation (23). In this 
equation, Cr is a 3 × 3 identity matrix, and the measurement of one parameter is assumed to be 

independent of those of other parameters. 

Kc(t + 1) = Pc(t |+ 1|t)C  
r [CrPc(t + 1| |  t)C + Rc]

−1
r (23) 

Using Kalman Gain Kc, the values of predictions and measurements are integrated and the covari‐
ance matrix is updated with equations (24) and (25). 

F(t + 1|t + 1) = F(t + 1|t) + Kc(t + 1) [F̂(t + 1) − CcF(t + 1|t)] (24) 
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Pc(t + 1|t + 1) = Pc(t + 1|t) − Kc(t + 1)CcPc(t + 1|t) (25) 
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4 Experiments with a Simulator Built with CTM 

CTM simulators were used to generate multiple databases to test the proposed algorithm. In the 

test using CTM simulators, the research team tended to test the basic structure of the code, so a 

relatively high market penetration of 60% was used. In the test using the microscopic simulator, 
market penetrations of 20% and 40% were used. 

4.1 Test with CTM simulator 

Two test databases are generated by simulators based on CTM. The output of this simulator in‐
cludes vehicle IDs, vehicle locations, and vehicle speeds at each time step. Vehicle locations should 

be converted to the ID of the road segment that contains the vehicle. The output file only has the 

trajectories of a subset of the total vehicles. For example, if the market penetration is 60%, then 

the output file only includes the trajectories of 60% of the vehicles. 

4.1.1 Test 1 with known parameters 

Figure 2 shows a test with all parameters known. The orange line is the actual density, and the blue 

line is the estimated density. The penetration rate is 60%. The measured density varies a lot and 

reaches zero at some time steps. It is because the input flow rate is 2 vehicles per time step and 

BSMs only provide data from 60% of the vehicles. Figure 2 reflects that if parameter values and 

the time of the incident are known, the CTM can be a good representation of the dynamics of the 

traffic flow generated by this simulator. For example, when there is a capacity drop at t = 40, the 

density estimation is close to the actual density of 8 vehicles, even though the measured density 

of probe vehicles is 4. The prediction step based on CTM corrects the measurement of 4 vehicles 
(shown in Figure 3), and the final estimation for this road segment at time step 46 is calculated to 

be 7.6 (round to 8). The accuracy of the Kalman filter is higher when there is an incident compared 

with the free‐flow condition. When there is an incident, the actual density will be much higher 
than the measured density of equipped vehicles and the Kalman filter will put more weight on the 

prediction step. 
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Figure. 2: Test 1 with known parameters (estimated density vs actual density) 

Figure. 3: Test 1 with known parameters (estimated density vs measured density) 

Figure 5 shows the estimated speed and measured speed of equipped vehicles. Figure 4 shows 
the estimated speed and the actual speed. The measured speed is slightly different from the 

actual speed. When there is no equipped vehicle at the current time step, the measured speed 

at last time step is used as the measured speed at the current time step, so it is possible that 
the actual speed has a big change but the measured speed remains the same. When there are 

few equipped vehicles in a road segment that behave differently from all the other vehicles in the 

same road segment, the measured speed and the actual speed will be different. In Figure 4, when 

the average speed is in free‐flow speed, the Kalman filter sometimes overestimates the average 

speed. When there is a drop in the travel speed, the estimated speed is close to the actual speed. 
Compared with the density, the speed estimation has higher density. In practice, the travel speed 

is used to determine the level of service of the road. Traffic engineers are more focused on the 
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speed estimation of the congestion condition than the free‐flow condition. Therefore, the speed 

estimation in the Kalman filter can provide useful information in practice. 

Figure. 4: Test 1 with known parameters (estimated speed vs actual speed) 

Figure. 5: Test 1 with known parameters (estimated speed vs measured speed) 

4.1.2 Test 2 with unknown parameters 

In test 2, another CTM‐based simulator was used to generate the test database. The values of 
parameters are unknown and the algorithm for parameter calibration runs simultaneously with 

the Kalman filter to get traffic state estimations. The market penetration rate is 65%. The results 
show that the free‐flow speed is easier to calibrate than the capacity or congested wave speed. In 

Figure 8, the initial value of the free‐flow speed is 30 miles per hour, but it converges to the actual 
value of free‐flow speed in a short time. In this test, the capacity and the shockwave speed do not 
converge to their right values. The trajectory data generated by the CTM‐based simulator does 

16 



not include enough information about the time gap or spacing between two vehicles. For capacity, 
it is not reasonable to use the maximum value of the flow rate for the value of capacity because 

the measured flow rate is only for equipped vehicles. For the backward shockwave speed, the 

calculation needs the reaction time between vehicles, which requires the case where two vehicles 
are close to each other. If there is no such case observed, the shockwave speed cannot be fully 

calibrated. In practice, the backward shockwave speed can also be calibrated by searching cases 
where two adjacent probe vehicles both have a drop in travel speed. With the time gap between 

two speed‐drops and the distance between these two probe vehicles, the backward shockwave 

speed can be estimated. 
If the parameters for CTM are not accurately calibrated, the prediction step of the Kalman 

filter will have limited accuracy. In Figure 6, the line representing estimation always follows the 

line representing the measurement. The estimation highly relies on the measurement step of the 

Kalman filter, which cannot represent the density including all vehicles on the road. In Figure 7, 
from time step 75 to time step 183, the actual density is always larger than the estimated density. 

Figure. 6: Test 2 with known parameters (estimated density vs measured density) 

17 



Figure. 7: Test 2 with known parameters (estimated density vs actual density) 

Figure. 8: Calibration of free-flow speed in Test 2 
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5 Simulation-generated BSM 

Real sensor information is never perfect, often containing: missing or imputed data, random and 

periodic noise, and measurement artifacts generated either by the sensor or as a result of the 

method by which the system is handling the sensor output. We aims to create analytical method‐
ologies that translate high resolution abstract sensor information into aggregate metrics quantify‐
ing real traffic conditions. To develop them, the methodologies needed to first be tested against 
an “unrealistically” true ground truth, with no unknowns, which is only possible through simula‐
tion. The simulation data, in addition to being unpolluted by missing data or noise, was provided 

so that we could continue on methodologies while the real world data from the CV Testbed was 
being gathered and reduced. By using pure data gathered from simulation, methodologies could 

be tested for accuracy without the issues that a real world data set might have, to ensure that they 

were sound before moving to real world data. 

5.1 Undisputed ground truth 

To provide a zero‐unknown ground truth, the Minnesota Traffic Observatory selected a very de‐
tailed existing simulation model, which was created in Aimsun. This simulation was of the City of 
Richfield and surrounding areas, comprising a complex network of all types of roadways (arterials, 
highways, ramps, etc.) that had been accurately calibrated on its creation. 

Figure. 9: Richfield simulation area (left) and road type (right) 

To use this simulation to emulate BSMs, a simulator plug‐in was developed that could work on 

any stretch of simulated roadway. This plug‐in allows for the introduction of Connected Vehicles 
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Figure. 10: A simulated section of roadway along I-494 in Richfield containing emulated 
RSUs (green highlight) 

(CVs) and/or Connected Automated Vehicles (CAVs) to the vehicle population; it also emulates the 

deployment of Road Side Units (RSUs) on the desired road sections. The plug‐in tracks selected 

simulated vehicles and extracts BSM information as long as they are traversing selected emulated 

RSU roadway segments. That way, the plug‐in can emulate any length of instrumented roadway 

as well as segmented pieces with intermediate non‐instrumented parts. BSM data will only be 

available for equipped vehicles when they are in instrumented sections. 
Figure 10 shows a section of I‐494 and Lyndale Ave in the Richfield simulation. The green 

stretch of roadway in the middle has the plug‐in to emulate RSUs active. 
Though real‐world BSM data will only contain vehicle ID, speed, latitude/longitude, and vehicle 

heading, the plug‐in captured more information than that as determined by Aimsun parameters. 
The simulation creates two records for each vehicle, for static and dynamic states. The static ve‐
hicle record, shown in Table 2.1, contains information about the vehicle that was unaffected by 

instrumentation. The dynamic vehicle record, shown in Table 2.2 contains information for each 

simulation step when the vehicle was located in an instrumented section. 
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Table 2: Static vehicle information record 
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Table 3: Dynamic vehicle information record 
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6 Experiments with simulated-based BSMs 

In this test, the microscopic simulation software AIMSUN was used to generate the database. 
Compared with the CTM simulator, the microscopic simulation model can generate drivers with 

more realistic driving behaviors and provide data that is more similar to actual BSM data. The 

preparation of simulation‐based BSMs is introduced in section 5. 

6.1 Ground truth database preparation 

To apply the database generated by the microscopic simulation model for the traffic state estima‐
tion, some data preprocessing works should be finished first. 

If the location of the origin is known, the travel distance of a vehicle cannot be directly calcu‐
lated using the current location (x,y) of this vehicle because the road section may be curved. It is 
more accurate to get the cumulative traveled distance along its trajectory, as shown in equation 

(26). 

∑t−1 √ 
Travel Distance = (x(k + 1) 

k=1 

− x(k))2 + (y(k + 1) − y(k))2 (26) 

The ground truth database needs to be prepared in advance to compare with the estimated 

results. We use the traffic state directly extracted using BSMs from 100% equipped vehicles as the 

actual traffic state. We did not use the measurements directly from the simulation because we 

need to get the estimated traffic states for each cell on a road section, for example, the number 
of vehicles, the average space‐mean speed, and exiting flow of each cell. Existing tools in AIMSUN 

cannot provide us measurements for each cell so we need to extract traffic states using the 100% 

BSMs using methods from existing studies. The trajectories of vehicles in the output of AIMSUN 

have a resolution of 0.1 second, but the required traffic state measurement is for a time interval 
that is equal to the time step of CTM. The method that converts 100% BSMs to traffic state mea‐
surements are from the study of (11), as shown in equations below. Equation (27) defines the 

area of a time‐space zone, which is the product of the cell length ∆L and the time step size ∆t. 
Equations (28) and (29) define the average flow and average density for a time‐space zone respec‐
tively, which requires the travel distances xi and the travel times ti of all vehicles in a time‐space 

zone. Equation (30) defines the average speed as the ratio of the average flow and the average 

density. Figure 11 shows the time‐space zone used in Eddie’s definition. 

|A| = ∆t × ∆L (27) 
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Figure. 11: Time-space zone 

∑ 
xi 

q = i (28)
|A∑ 

|

t
k i 
= i (29)

|A∑ 
|

xi 
v = ∑i (30) 

i ti 

With the ground truth data and the estimated traffic states, estimation error can be calcu‐
lated by equation (31), where the numerator is the absolute value of the difference between the 

estimated value x̂ and the actual value x̃, and the denominator is the actual value x̃. 

|x̂ − x̃
Error = 

|
(31)

x̃ 

6.2 Test databases with simulated-based BSMs 

The microscopic simulation model was calibrated with freeway detector data and traffic demand 

data. In Figure 12, two roads in the red box are the target roads whose vehicle trajectories are 

extracted during the simulation. These two roads are northbound and southbound sections of 
freeway I–35. API is used to extract the BSMs during a 45‐min simulation corresponding to the 

morning pick hour (6:45 am – 7:30 am). In the simulation, the northbound section of I–35 is not 
congested while the southbound section of I–35 is congested. Two databases are built separately 

for these two sections of I–35. After the database including 100% of BSMs is generated (used to 
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Figure. 12: Target road sections in AIMSUN 

compare the estimation to the actual traffic state), the other four datasets are generated includ‐
ing 20%, 40%, 60%, and 80% of BSMs. To generate these datasets with partial trajectories, we 

generate a random number between 0 and 1 for each vehicle. If the random number is smaller 
than the set penetration rate, the BSMs of this vehicle is stored, otherwise, the vehicle BSMs are 

ignored. There are 8 databases generated in total. The sizes of these 8 databases, as well as the 

files for ground truth data, are shown in table 4. 
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Table 5: Estimated traffic flow parameters for experiment 1 and 2 

Parameter Value 

Free‐flow speed vf 60.9 miles per hour 
Capacity Q 2200 vehicles per hour per lane 

Shockwave Speed w 17.2 miles per hour 
Jam density K 234 vehicles per mile per lane 

Table 4: File sizes of BSM databases from microsimulation models 

Congested/uncongested Penetration rate File size Row number 

Uncongested 20% 74.5 MB 416586 

Uncongested 40% 154 MB 863222 

Uncongested 60% 231 MB 1291084 

Uncongested 80% 333 MB 1862971 

Uncongested 100% 384 MB 2148561 

Congested 20% 107 MB 743698 

Congested 40% 213 MB 1474930 

Congested 60% 319 MB 2202720 

Congested 80% 426 MB 2941030 

Congested 100% 650 MB 3653996 

The database used for parameter calibration is extracted from another 45‐minute simulation 

on a road section on highway 494. Table 5 shows the estimated values of parameters. 

6.3 Uncongested scenario 

Figures 13 and 14 show the BSMs generated from the simulation under uncongested condition 

with different penetration rates. In Figures 13 and 14, most data points except the data points 
for the auxiliary lane are in green, which indicates most vehicles move with relatively high speed 

during the 45‐min time interval. In the last 15 minutes, congestion can be observed but most 
vehicles travel with a speed higher than 40 mph. 

Figures 15, 16, and 17 show the traffic state estimation results with different penetration rates 
compared with the actual traffic states. For densities, speeds, and flows, the ranges of the y‐axis 
in figures are 0 to 35 (vehicles), 0 to 65 (mph), and 0 to 15 (veh) respectively. 

Before time step 120, all cells in this road section are not congested and have cell densities that 
are smaller than 15 vehicles. After time step 120, larger flows enter the road section through cell 
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1, so we can observe the cell color of the cell 1 becomes red. As large traffic flow passes through 

the road section, the cell color in the heatmap of the density from cell 2 to cell 8 becomes orange 

in order. After time step 300, as the road section becomes more congested, an orange area forms 
at the right side of the heatmap of the density. The Kalman filter can capture the formation and 

dissipation of the orange area in the heatmap of the density even with a low penetration rate. For 
the heatmap of the speed, as vehicle speeds can be directly measured from BSMs, the heatmap 

of estimated speed is similar to the heatmap of actual speeds. For the flow estimation, we can 

observe that the heatmap of estimated flow can capture the trend when input flow becomes larger 
after time step 120. 
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Figure. 13: BSMs from microscopic simulation model (uncongested condition) 

(a) 20% penetration  40% penetration (b)

(c) 60% penetration (d) 80% penetration 
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Figure. 14: 100% BSMs from microscopic simulation model (uncongested condition) 
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6.3.1 Traffic state estimation results 

Figure. 15: Density estimation under different penetration rates with BSMs from 
microsimulation data (uncongested condition) 

(a) 20% penetration (b) 40% penetration 

(c) 60% penetration (d) 80% penetration 

(e) 100% penetration 
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Figure. 16: Speed estimation under different penetration rates with BSMs from 
microsimulation data (uncongested condition) 

(a) 20% penetration (b) 40% penetration 

(c) 60% penetration (d) 80% penetration 

(e) 100% penetration 
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Figure. 17: Flow estimation under different penetration rates with BSMs from 
microsimulation data (uncongested condition) 

(a) 20% penetration (b) 40% penetration 

(c) 60% penetration (d) 80% penetration 

(e) 100% penetration 
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Figure. 18: Estimation errors under different penetration rates with BSMs from 
microsimulation data (uncongested condition) 

(a) Overall error (b) Occupancy error 

(c) Speed error (d) Flow error 

Figure 18 shows the overall error or the error by cells (shown in equation (31)) for the experiment 
under an uncongested condition. As we can directly get the measurement of vehicle speed, the 

speed estimation has the highest accuracy while the density estimation has the lowest accuracy. 
With an increase in the penetration rate, the estimation accuracy increases. The last cell has the 

lowest estimation accuracy in density estimation while the first cell has the lowest accuracy in 

both speed estimation and flow estimation. As the input flow to the first cell is unknown, the 

only information that can be used to estimate the input flow is the number of detected vehicles 
entering the road section. 
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Figure. 19: Link travel time estimation under different penetration rates 

(a) 20% penetration (b) 40% penetration 

(c) 60% penetration (d) 80% penetration 

(e) 100% penetration 

The link travel times are estimated using the estimated speed. It is calculated by summing up 

travel times in all cells. The estimation of link travel times show high accuracy. Under all penetra‐
tion rates, the travel time is 52 seconds at first, and then increases to about 70 seconds. 
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∑ L
Link Travel Time = i (32)¯̂vii 

Figure. 20: Link travel time estimation under different penetration rates 

(a) 20% penetration (b) 40% penetration 

(c) 60% penetration (d) 80% penetration 

(e) 100% penetration 
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We also estimate the queue length and the calculation algorithm is shown in 1. When the 

road is congested, a queue may form at the downstream of the road section and dissipate to the 

upstream of the road. The queue length is estimated by adding up the number of vehicles in each 

cell from the last cell to the first cell of the road. It is assumed that only if the last cell is congested, 
there is a queue formed and will spread to the upstream of the road. Otherwise, the queue length 

is 0. A cell is considered as a congested cell if its average speed is smaller than the critical speed 

vc. However, in this scenario, there is no congestion on the road, so the queue length is 0. 

Algorithm 1 Queue length calculation 

The total cell number is i, the queue length q is 0 vehicle 
for every cell in a link (start from downstream to upstream) do 

if v̂i ≤ v̂c then 
q = q + n̂i 

else 
Stop the queue length calculation 

end if 
end for 

6.4 Congested scenario 

Figures 21 and 22 shows the BSMs generated from the simulation under congested condition with 

different penetration rates. As shown in these two figures, the congestion shows after about 25 

minutes of the simulation, then the average travel time starts to decrease and the density starts 
to increase. Lane 1 has the most severe congestion among three lanes. 
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Figure. 21: 100% BSMs from microscopic simulation model (congested condition) 
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Figure. 22: BSMs from microscopic simulation model (congested condition) 

(a) 20% penetration (b) 40% penetration 

(c) 60% penetration (d) 80% penetration 
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6.4.1 Traffic state estimation results 

Figure. 23: Density estimation under different penetration rates with BSMs from 
microsimulation data (congested condition) 

(a) 20% penetration (b) 40% penetration 

(c) 60% penetration (d) 80% penetration 

(e) 100% penetration 
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Figure. 24: Speed estimation under different penetration rates with BSMs from 
microsimulation data (congested condition) 

(a) 20% penetration (b) 40% penetration 

(c) 60% penetration (d) 80% penetration 

(e) 100% penetration 
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Figure. 25: Flow estimation under different penetration rates with BSMs from 
microsimulation data (congested condition) 

(a) 20% penetration (b) 40% penetration 

(c) 60% penetration (d) 80% penetration 

(e) 100% penetration 

Figures 23, 24, and 25 show the traffic state estimation results compared with the actual traffic 
states. Compared with the uncongested scenario, the cell densities are larger as the cell color in 
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the heatmap of the density becomes red. There is a shockwave that starts at time step 216 on cell 
5, and then it spreads upstream. There are 5 cells out of 8 cells getting congested after time step 

260. The heatmap of the estimated densities shows high similarity to the heatmap of the actual 
densities under both low and high penetration rates. In the heatmap of the speed, we can also 

clearly find the formation and the propagation of the shockwave from cell 5 to upstream cells as 
there is an orange cloud that appears at time step 216. In the heatmap of estimated flow, we can 

see there is an area in which the cell color does not change. However, in the heatmap of actual 
flow, the cell color changes between light orange and dark orange back and force. It shows that 
the variance of actual flows is larger than the variance of estimated flows. 

Figure. 26: Estimation errors under different penetration rates with BSMs from 
microsimulation data (congested condition) 

(a) Overall error (b) Occupancy error 

(c) Speed error (d) Flow error 

Figure 26 shows the estimation error of the experiment under a congested condition. Overall, 
the accuracy of our model is much higher on a congested road. The flow estimation has the largest 
error whose maximum error is 20% and the speed estimation has the smallest error whose max‐
imum error is 6%. An increase in the penetration rate increases the estimation accuracy. When 
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analyzing the estimation error by cells, two cells at two ends of the road section have the largest 
error in density estimation. The 5th cell in the road section has the largest error in speed estima‐
tion, but all speed errors are smaller than 7.3% and there is no big difference in the speed error 
between cells. For flow estimation, the first cell has the largest error due to the lack of enough 

information for input flows. 
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Figure. 27: Link travel time estimation under different penetration rates 

(a) 20% penetration (b) 40% penetration 

(c) 60% penetration (d) 80% penetration 

(e) 100% penetration 

The link travel times are estimated, as shown in Figure 27. It starts from 50 seconds and then 

increases to more than 120 seconds before it drops to 90 seconds. The estimation of link travel 
times under all penetration rate shows high accuracy. Figure 27 shows the estimation of queue 

length. The time when congestion appears and the queue length can be accurately estimated. 
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The estimation with a penetration rate of 20% tends to overestimate the queue length. 

Figure. 28: Link queue length estimation under different penetration rates 

(a) 20% penetration (b) 40% penetration 

(c) 60% penetration (d) 80% penetration 

(e) 100% penetration 
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Figure. 29: Field data retrieval communication system 

7 Real-world Vehicle Trajectory Collection 

This task utilized the existing CV Testbed of Minnesota Traffic Observatory to provide real‐world 

ground truth datasets for emulating BSMs. To understand why extracting seamless vehicle tra‐
jectories and emulated BSMs was an involved task, the process of collecting data from the site, 
transmitting it to MTO for storage, and accessing the database will be discussed. 

7.1 Data gathering 

The Testbed is made up of seven 24Ghz radar and cameras along a half‐mile stretch of I‐94 west‐
bound, and was built on an existing MTO research field lab. From the Testbed, data is transmitted 

along a wireless communication network back to the MTO, utilizing existing rooftop nodes put 
in place for the original field lab. Figure 29 below shows how the Roadside Stations are able to 

transmit data back to the MTO. Before discussing extraction and cleanup of the radar data into 

emulated BSMs, it is important to understand the system architecture of the MTO’s database, 
which allows access to historical and near‐real‐time data critical to the development of software 

discussed below. 
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7.2 Database storage process 

Once the data arrives back at the MTO, generally within one second, it is stored in a PostgreSQL 
database in real time. This database also contains all historical data from the sensors. The data 

is saved exactly as it is output by the sensor driver without modification to preserve the original 
state, allowing further processing to be done without changing the raw data. In addition to the 

raw sensor data, the database also contains historical and current position and orientation data 

for each of the sensors, providing an automatic means for combining data from multiple sensors 
into a single reference frame. Finally, the database contains lane definitions for the corridor in 

the reference form of the sensors, allowing target data to be placed into a lane for analysis. Be‐
cause single sensor will produce several million target measurements in a single day, data from 

the sensors is split into individual tables for each date to reduce the maximum query time. Data 

is organized into three tables for each date to provide different levels of resolution to analyze the 

data. At the highest resolution available, in the “trajectories_<date>” table, each record consists 
of a single target measurement, with an X and Y position and velocity value for each target at each 

point in time. One level further out, in the “objects_date” table, each record consists of a single 

target as viewed by one sensor over its entire life, containing information like the time of its first 
and last measurements, the estimated length of the target, and its average speed. Finally, in the 

“frames_date” table, information about the sensor frames that were decoded is provided, includ‐
ing the message count from the sensor and the number of targets observed during that instant in 

time (up to 64 unique targets). Together, these tables provide a complete picture of the data read 

from the sensor while reducing the amount of redundant information stored by the database. A 

diagram showing these tables and their relationships with each other is shown in Figure 30. 
In addition to the data tables, there is another table containing both historical and current 

sensor position and orientation information. In this table, each record contains the sensor ID, the 

latitude, and longitude of the sensor, the X and Y coordinates of the sensor relative to the first 
(most‐downstream) sensor in the network, and the start and end time for which this configura‐
tion is valid. For the current configuration, the end time is left blank to indicate that it is still in 

place. Additionally, the direction of the sensor (upstream or downstream) is also included, since 

it is necessary to understand the coordinate system of the sensor relative to the others; while the 

sensors contain their own orientation configuration that is used to translate ranges and angles 
into XY coordinates internally, the direction relative to moving traffic is still needed. The table 

containing lane information uses an integer ID for each lane, with lane 0 starting at the right‐most 
edge of the road. Lanes are also given a name and designated as either a main or auxiliary lane, 
as one of the lanes in the corridor exits midway through the sensor installation. The geometry of 
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Figure. 30: Database diagram depicting schema of trajectory data from sensors. 

the lanes is indicated by a spline representing one edge of the lane along with a lane width. This 
allows targets to be sorted into a lane at each point in time by measuring their distance from the 

spline and determining if it is within the lane, based on the lane width. Lanes are also defined for 
a period of time, which allows the system to accommodate changes in road geometry that would 

occur due to construction. This configuration is utilized by the visualization tools developed dur‐
ing this project. To simplify the use of the sensor position/orientation table and lane information 

table for adding information to raw sensor data, a number of SQL functions are also included in 

the database. These functions use the sensor positions/orientations to transform target coordi‐
nates into a global reference frame that is uniform across the network of sensors and use the lane 

information to assign a lane to each target at each point in time based on that translated position. 
This allows users to merge the data from multiple sensors and add this lane information in a single 

query without having to worry about the details of where the sensors or lanes were located at any 

particular point in time. 

7.2.1 Inter-Process Communication for Exchanging Data 

In addition to the PostgreSQL database, data is routed through a propriety Inter‐Process Commu‐
nication (IPC) system, meant to decode and share sensor data for time‐critical safety applications. 

48 



Table 6: Sensor data fields available in IPC data 

Field Name Data Type Description 

time Double‐precision float Unix timestamp with microsecond resolution 
count Unsigned integer Cycle count for the radar 
status Integer Status indicator 
targets Integer Number of targets in message (up to 64) 
id[64] (Array) Unsigned short integer Array to hold ID of each target 
x[64] (Array) Float Array to hold X position of each target 
y[64] (Array) Float Array to hold Y position of each target 
vx[64] (Array) Float Array to hold X component of velocity of each target 
vy[64] (Array) Float Array to hold Y component of velocity of each target 
relays[16] (Array) Boolean Array to hold status of relay triggers 

The data fields used for radar data, along with their data types, are listed in Table 6. These fields 
are used by software applications to produce visualizations of the data. 

By abstracting sensor data in this way, the IPC system facilitates quicker development of ap‐
plications using the data, allows multiple applications to use that data without the potential to 

interfere with one another, and provides a number of tools to extend the functionality of the 

system without requiring additional development. While the driver application itself only runs 
in real‐time, making applications responsible for buffering data themselves, the IPC framework 

comes with utilities for saving data into a binary file and replaying it later. This feature is useful 
for development, testing, and debugging in that it allows applications to use sensor data without 
requiring an actual sensor thereby allowing specific conditions to be recreated without complex 
testing setups. Figure 31 below summarizes the system architecture as a flowchart, for reference. 

An IPC visualizer exists, but was not part of the emulated BSMs effort. All tools that are used 

to determine periods of adequate congestion while all sensors were active, and extract and inter‐
polate seamless vehicle trajectories draw from the main PostgreSQL database. 

7.3 Data extraction and clean up 

The CV Testbed captures and saves vehicle trajectories in a raw, sensor‐by‐sensor format. This 
was adequate for the scope of the original Testbed project; however, to emulate BSMs the pro‐
duction of seamless trajectories, filling gaps in the records due to sensing issues, and elimination 

of duplicate and erroneous data are required. The MTO has developed several different tools to 

interact with the database, to visualize near real‐time data as well as historical datasets. The first 
applications that were developed to demonstrate the functionality were visualizers. These are 
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Figure. 31: Data collection system architecture 

graphical programs ranging in complexity that display data from multiple sensors in a plan view, 
allowing users to see the data that is collected from the radar in an intuitive way. 

7.3.1 Database Visualizers 

The database visualizers require a configuration file containing sensor positions and orientations, 
but this file contains the same information used to adjust target positions in the database and can 

also be used to update this information in the database using a simple tool. This configuration file 

also contains a lane delineation algorithm. Currently, only the existing configuration file has been 

implemented for use in visualizing the raw data. The configuration file and current lane assignment 
algorithm does result in an imperfect visualization at points, where vehicles are duplicated or 
dropped in the programs, or assigned to the wrong lane. Examples of these issues will be shown 

below. Future configurations and algorithms to interpret the raw data can be implemented to 

reduce these issues, once developed. To extract and emulate trajectories and BSMs, three new 
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Figure. 32: Sensor availability heatmap tool 

tools were developed to: see what sensors were active at any given time, extract and visualize 

vehicle trajectories both in Matlab and in Excel, and create time‐space diagrams of vehicle travel 
along the Testbed. It is critical to note that these tools are based on the original alignment of the 

Testbed (ie, before any of the disassembly or movement of stations required by the 2017‐present 
construction on I‐94). New configuration files will allow for the new geometry of the Testbed to 

be displayed in the visualizers, in the future. 
The first tool is a Matlab‐based application used to see what sensors were functioning at any 

point on a given day. The output is shown in Figure 32. The Y axis represents the seven sensors, 
and the X axis is time, which can be anywhere from a five‐minute period to an entire day. The 

tool checks each sensor in the database on the desired day and time to see if it was recording 

data or not. The resulting heatmap will look something like Figure 32, where a sensor that was 
functioning is green and any downtime is red. This tool is used once a desired period of congestion 

is determined, to see if all sensors were active during that period. 
This tool is limited to one vehicle ID at a time, but can be a powerful tool for analysis as it is 

importing the data in to Matlab for the user to access. 
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Figure. 33: A closer look at the output graph of vx vs time 

The next tool is also Matlab based, and pulls vehicle location and velocity data from the database 

for Matlab to visualization and analysis. In a way, it functions as a User Interface for Matlab to com‐
municate directly with the MTO’s database. The user must choose which vehicle ID they would 

like to graph, as well as the time and day. Figure 33 shows an output of the program. Each vertical 
line represents a different vehicle’s specific ID, which is limited by the radar’s capacity to recognize 

up to 64 different objects. The limitation in recognition leads to vehicle IDs being recycled. It is 
one of several graphs the tool is programmed to produce, as the user desires. The time is shown 

in a UNIX timestamp. This tool is limited to one vehicle ID at a time, but can be a powerful tool for 
analysis as it is importing the data in to Matlab for the user to access. 

The most complex of the tools, the Python‐based Graphical Interface utilizes database visual‐
ization in a variety of ways. When users first boot up the program, they are able to choose whether 
to use the existing configuration file or custom configuration. As mentioned in the previous sec‐
tion, currently only the existing configuration file is available for use. Users will be taken to a home 

screen, as seen in Figure 34. 
On this homescreen, users can see broad sensor availability for a month at a time. Clicking the 

desired day, users will then be able to see what periods of time all the sensors were available and 

select the time frame for the output time‐space graph. Figure 35 shows this display. 
After the user has selected the sensors and time frame they wish to see, they will click plot 
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Figure. 34: Homescreen of the Graphical Interface tool 

and wait for the program to run (this can take anywhere from a few minutes to hours depending 

on the amount of data being pulled from the database). On completion, the program will display 

a time‐space diagram of all vehicle raw data for that time. 
Figure 36 breaks down what sensor data is being displayed in each portion of the graph. Figure 

37 shows the sections of radar coverage on a map overlay. 
In Figure 36 and Figure 37, the vehicles are traveling from east to west and encountering the 

radar coverage in alphabetical order. Section A is data from the region between Chicago Ave and 

the gantry at Park Ave. Section B is from the gantry at Park Ave, covering the section underneath 

the Park Ave overpass. That is why the trajectories in section B of Figure 36 change color – clearly, 
it is the same vehicle with the same trajectory. Section B overlaps with Section C on the west side 

of the Park Ave overpass. For a limited time, targets are duplicated while the vehicles are picked up 

by two different sensors. Section C extends all the way to the Portland Ave overpass and overlaps 
with Section E. Section D is completely inside Section C, and a small part of Section E. There is a 

small blind spot at the west edge of the Portland Ave overpass, as Section E and Section F sensors 
are looking in opposite directions with no coverage directly between them. Section F is westward 

facing from Portland Ave, and section G is eastward facing from 3rd Ave. The break between F and 

G is due to the TH65 bridge, where the sensors were placed with as much line of site as possible 

but still could not pick up the space directly under the bridge. 
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Figure. 35: Sensor availability per hour, and selection of time frame for output 

In addition to overlap caused by radar placement, the configuration file and lane assignment 
algorithms sometimes misinterpreted data, leading to duplicate and misaligned vehicles. Figure 

38 shows one such misalignment circled in red; vehicles are shown to have crossed paths, but no 

other signs of an incident appear. However, examining the slope of the misaligned vehicle reveals 
that it was on the left lane, and was placed into the right lane incorrectly by the lane assignment 
algorithm. 

In addition to the misaligned vehicle, several duplicate trajectories can be pointed out. These 

result from radar overlap or sensor artifacts, the configuration algorithm inappropriately placing 

vehicle on the roadway, and/or the sensor position in the configuration file being off by a few feet. 
Figure 40 shows the same screenshot as Figure 38, but with duplicate trajectories circled. 

Within the time‐space diagram, users can also select specific trajectories that are of interest 
and export the raw data for only those trajectories into an Excel file for further analysis. Cur‐
rently, no tool exists to extract vehicle trajectories with the same slope over the entire length of 
the testbed. To knit together continuous trajectories, they must be examined by inspection and 

selected for export. Figure 41 shows a zoomed in look at a single trajectory that has been selected 

for analysis. The color change indicates a different vehicle ID, but by inspection of the slope, it is 
the same vehicle passing by multiple sensors. 
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Table 7: Output of selected trajectory, showing time, vehicle ID, sensor ID, position and 
velocity 

Table 7 shows an example of the output, where “object_ID” is the vehicle ID. This table contains 
position, velocity and trajectory information. 

This raw radar data becomes the real‐world ground truth for the methodologies being devel‐
oped in this project. As this radar data is collected at 20 Hz, twice the frequency of BSMs, only 

every other line will be used during emulation. The BSMs will include the velocity (magnitude), 
the latitude and longitude, and heading of the vehicle. The heading will be calculated using the 

latitude and longitude from two consecutive data points. 

7.4 Emulating BSMs 

The previous chapter provided a summary overview of the I‐94 CV Testbed infrastructure and 

data collection architecture. It also highlighted the major issues involved in the collection of ac‐
tual vehicle trajectories through radar. As pointed out, the radar data are not perfect since they 

include several artifacts and noise generated by the sensor as well as issues with the data har‐
vesting architecture. In the course of this task, which represented the first real‐world, large scale 

implementation of the I‐94 CV Testbed, a number of previously undiscovered issues and bugs in 

the architecture were discovered. Given that the actual data had been collected more than a 

year before, it was not possible to repeat the data collection so a considerable effort was spent 
in finding the issues, which involved the development of algorithms that could scan the 1.8TB of 
collected vehicle trajectories, detect the discrepancies and produce summary visualizations that 
allowed the research team to identify the source of each problem and develop correction algo‐
rithms. Each of the four scan and correction cycles necessary to bring the raw data into a stable 

quality required three weeks of processing time for the database server. Even after the data was 
cleaned up and all the discovered errors and noise removed, the daunting task of stitching the 

trajectory pieces captured by the different radar sensors and filling in the gaps with estimates 
that follow realistic vehicle kinematics remained. The research team, as part of Task 6, is working 

on a large scale data mining methodology; due to the very large delay in this task it was decided 

that the identification of same vehicle’s individual radar traces was going to be done manually, 
assisted by additional purpose made tools. Figures 42 and 43 present the latest evolution of the 
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Time‐Space diagram visualization tool that allows for manual identification and marking of single 

vehicle trajectory pieces. 

7.4.1 Data processing methodology 

Specifically, the current batch of data extracted for Task 1 covers a five‐minute period between 

13:55:00 and 14:00:00 on December 22nd, 2017. Figure 42 shows the time–space diagram of 
the captured trajectories on the right lane between Chicago Ave and 3rd Ave on I‐94 westbound. 
This segment is approximately 650 meters long and is as explained earlier is covered by six radar 
stations. (Note: one radar was not used that day as the data provided by it overlapped with 

other radars. Removing it led to less noise in the existing data.) The manual trajectory extraction 

methodology can be summarized in the following steps: 

1. Having selected an appropriate day and time period, the tool retrieves from the database 

all the individual radar target frames. 

2. Having retrieved the raw data, the internal lane assignment algorithm assigns a lane to each 

individual data point. This assignment, as explained earlier, is not perfect but it is a necessary 

step in the production of the Time‐Space visualization. The underlying data does not change 

though. 

3. Having confirmed that the selected time period has reasonable data for the purposes of this 
research, the entire set is extracted and stored in a local database file. 

4. The tool allows the manual selection of trajectory pieces that the user identifies as belonging 

to the same physical vehicle. This step required careful progress to avoid stitching together 
trajectory segments from different vehicles. Figure 43 shows two such trajectory groups 
selected (highlighted by the tool) and the data below it present the output of the program. 
In this example, the data output read: 
17: 821 843 894 1015 1056 1114 1199 1221 

18: 679 722 829 897 924 1027 1017 1088 1198 

5. The number before the “:” represents the new ID of the combined trajectory trace while 

the list of numbers following it are the unique ID’s of the individual radar traces that belong 

to it. Notice that there is a fair amount of empty spaces in the Time‐Space diagram. The 

radar on the I‐94 CV Testbed, being Doppler radar cannot recognize standing targets. If 
the speed of a tracked vehicle drops below 0.2 m/sec it becomes “invisible” to the radar 
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sensors. In addition, once the vehicle gains speed above 0.2 m/sec, it takes the radar 12 

cycles (0.6 seconds) to reacquire the target and start tracking. The traffic on the right lane 

during the selected time period, as it was usual in that section of I‐94 was congested and 

one can recognize the familiar patterns of shockwave disturbances traveling upstream. 

6. The second output of the new tool is a text file that contains the aforementioned manually 

identified vehicle trajectory groups. The graphs in Figure 44 present an example of the 

extracted information from one such trajectory group. Notice that the trajectories include 

a lot of discontinuities as well as overlapping segments in the areas where more than one 

radar sensor tracks the actual vehicle. In addition, especially the cross lane location of the 

vehicle has several outliers, typical of data captured from a down‐lane radar sensor. The 

next step involves the cleaning up of noisy and erroneous data and the imputation of missing 

ones. 

7. For this step, another tool was developed, this time in Matlab. The Combined Trajectory 

Generation Tool, employees a series of outlier detection and filtering methodologies to de‐
tect and reduce the noise and erroneous data points in the combined trajectory. For exam‐
ple, to eliminate the outliers and smooth the data in the Y (cross‐lane) dimension a three 

term Fourier series model is fitted in the data. The resulting model also allows for the esti‐
mation of missing trajectory points. The X (down lane) and Speed series are smoothed and 

imputed through the use of a piecewise cubic spline model. 

8. Given that the original grouping was done manually, it is possible to have included trajectory 

segments that looked appropriate in the time‐space diagram but do not belong to the same 

vehicle. For this reason the tool allows for the visualization of all combined trajectories 
so the user can identify discrepancies, make adjustments in the input file containing the 

groupings and repeat the process. 

9. The final output from the process is a series of individual files containing the combined, 
imputed, and filtered trajectory of an individual physical vehicle. The final output includes 
Latitude, Longitude information and has an update interval of 10Hz to emulate the required 

information contained in the BSMs. The following table presents a sample from the file 

containing the output for the vehicle shown in the earlier figures. 

In total for the selected five minute period on December 22nd, 2017 the resulting dataset 
includes 144 vehicle trajectories on the Left lane, 141 trajectories on the Middle lane, and 122 

trajectories on the right lane. Please note that the lane designation is purely organizational since 
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Table 8: Example of emulated BSM output 

Vehicle‐ID Time Global_X Global_Y Speed Latitude Longitude 

34 1513972578.28193000 643.1856 ‐59.8705 18.5667 44.9661 ‐93.2631 
34 1513972578.38192990 640.3964 ‐59.8536 18.7000 44.9661 ‐93.2632 
34 1513972578.48192980 637.2193 ‐59.8442 18.7000 44.9661 ‐93.2632 
34 1513972578.58192970 635.3279 ‐59.8511 18.7000 44.9661 ‐93.2632 
34 1513972578.68192960 633.4836 ‐59.8697 18.7000 44.9661 ‐93.2633 
34 1513972578.78192950 631.6270 ‐59.9043 18.7000 44.9661 ‐93.2633 

a lot of these vehicles performed several lane changes during the half a kilometer path. For 
example, vehicle 34 shown as an example on Figure 45, as can be observed from its Global_Y 

coordinate time series performs at least two lane changes. 
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Figure. 36: Time-space broken down by sensor 
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Figure. 37: Radar (red dots) coverage areas (shaded), with overlaps 

Figure. 38: Misaligned vehicle due to configuration file, on the right lane 
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Figure. 39: Correct lane for the misaligned vehicle (left lane). 

Figure. 40: Duplicate trajectories 
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Figure. 41: Example selected trajectory. (icons have changed from dots to crosses) 

Figure. 42: Time – space diagram visualization tool 
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Figure. 43: Time – space diagram visualization tool. Example of grouping of vehicle traces 
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Figure. 44: Graphs of Raw group data 

(a) 

(b) (c) 
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Figure. 45: Cleaned, combined, and Imputed actual vehicle trajectory information 

(a) 

(b) (c) 
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8 Experiment using BSMs from Radar Data 

The experiment with BSMs generated from the microscopic simulation provides an upper bound 

for the accuracy of the Kalman filter because the coordinates in BSMs from the microscopic simu‐
lation are always accurate. The BSMs generated from radar data include noises which may affect 
the estimation accuracy. The preparation of BSMs generated from radar data is introduced in sec‐
tion 7. A database including 100% of BSMs is created first, then four other databases including 

20%, 40%, 60%, and 80% of BSMs are generated. Table 9 lists the sizes of generated databases. 
The estimated values of four parameters are shown in table 10. 

Table 9: File sizes of BSM databases from radar data 

Penetration rate File size Row number 

20% 1.2 MB 15367 

40% 2.25 MB 28990 

60% 3.67 MB 47074 

80% 4.81 MB 61615 

100% 6.19 MB 79367 

Figures 46 and 47 show the BSMs generated from radar data with different penetration rates. 
Based on Figure 46, the vehicles are not evenly distributed among three lanes, the third lane has 
the most vehicles while the first lane has the fewest vehicles. 

Table 10: Traffic flow parameters for experiment 3 

Parameter Value 

Free‐flow speed vf 

Capacity Q 

Shockwave Speed w 

Jam density K 

62.3 miles per hour 
1909 vehicles per hour per lane 

9.35 miles per hour 
234 vehicles per mile per lane 
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Figure. 46: 100% of BSMs from radar data 
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Figure. 47: BSMs from radar data 

(a) 20% penetration (b) 40% penetration 

(c) 60% penetration (d) 80% penetration 
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8.1 Traffic state estimation results 

Figure. 48: Density estimation under different penetration rates with BSMs from radar data 

(a) 20% penetration (b) 40% penetration 

(c) 60% penetration (d) 80% penetration 

(e) 100% penetration 
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Figure. 49: Speed estimation under different penetration rates with BSMs from radar data 

(a) 20% penetration (b) 40% penetration 

(c) 60% penetration (d) 80% penetration 

(e) 100% penetration 
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Figure. 50: Flow estimation under different penetration rates with BSMs from radar data 

(a) 20% penetration (b) 40% penetration 

(c) 60% penetration (d) 80% penetration 

(e) 100% penetration 

Figures 48, 49, and 50 show the traffic estimation results compared with the actual traffic states 
(figures with a 100% penetration). The difference between the estimated speeds and the actual 
speeds are small, but there are obvious differences between the estimated densities and esti‐
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mated flows, and actual densities and flows. In the heatmap of estimated densities, mild conges‐
tion forms at time step 5 on cell 3. Then the congestion propagates to cell 2 at time step 21. The 

congestion on cell 3 does not disappear until the end of the 5‐min period. Compared with the 

heatmap of actual densities, the densities on cells 2, 3, and 4 are overestimated. In the heatmap 

of estimated speeds, the general speed variation is similar to the heatmap for actual speeds. The 

speed on cell 1 first drops at time step 22 as the cell color changes from light green to light yellow, 
followed by the speed drop on cell 2 at time step 24. In the heatmap of estimated flows, the first 
row is the input flow to cell 1. The second, third, fourth, and fifth rows are the flows going out of 
cells 1, 2, 3, and 4 respectively. The flows going out of four cells are overestimated as the color 
for most cells is light green in the heatmap of estimated flow. For cell 2 and cell 3, the estimated 

flows are almost constant and the flow going out of cell 2 stays at its capacity for a long time. The 

actual flows for these two cells have more variance as the cell color switches between green and 

yellow. 

Figure. 51: Estimation errors under different penetration rates with BSMs from radar data 

(a) Overall error (b) Occupancy error 

(c) Speed error (d) Flow error 

Figure 51 shows the error in the traffic state estimation with radar data. The error for speed 
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estimation is the smallest, with a maximum error of 13% when using a penetration rate of 20%. 
For density and flow estimations, the errors are about 51% and 52% respectively. 

As we have seen in the estimation results with the BSMs from microsimulation models, the 

Kalman filter has relative low estimation accuracy under uncongested traffic conditions. As the 

BSMs from radar data corresponds to a 5‐min uncongested time interval, the estimation accuracy 

here for the density and the flow is not high either. Based on the structure of the trapezoidal 
fundamental diagram, when the traffic is uncongested, given the speed, there is not a value of 
density uniquely corresponding to this value of speed. When the traffic is congested, there is a 

density that corresponds to a given value of the speed. Another reason that accounts for the low 

accuracy for the density and the flow is the small values of the actual density and speed. For 
example, if the actual density is 2 vehicles, and the estimated density is 4 vehicles, the error is 
as large as 100% even though the difference between the actual and the estimated density is 2 

vehicles. If the actual density is 22 vehicles, and the estimated density is 20 vehicles, then the 

error is as small as 9.1%. 
Besides, The error in speed estimation decreases with the increase of penetration rate, but 

the decreasing trend for density and flow estimations is not obvious when the penetration rate 

increases. The first cell has the largest error in both density and flow estimation. For the speed 

error, the difference among cells is not obvious. 
The link travel times of vehicles are calculated using the estimated speed. The link travel time 

is calculated as the summation of the travel time of each cell, as shown in equation (32). The travel 
time estimations under all penetration rates show high accuracy. The link travel time is about 28 

seconds at first and then increases to 40 seconds before it drops to 28 seconds in the end. 
Besides, the queue length of the road is estimated using the estimated density of n̂i and speed 

v̂i. Figure 53 shows that the estimated queue length is zero. The queue length is overestimated 

when 20% and 40% of BSMs are used. 

8.2 Discussion 

The estimation results show that the accuracy of the Kalman filter is good when applying to the 

BSMs generated by microscopic simulation models. Under the uncongested scenario, errors for 
the density, the speed, and the flow estimations are about 23%, 3%, and 23% respectively. Under 
the congested scenario, errors for the density, the speed, and the flow estimations are about 15%, 
3%, and 12% respectively. An increase in the penetration rate increases the estimation accuracy 

of the Kalman filter. 
The accuracy of the Kalman filter is much lower when applied to BSMs from radar data as 
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there are noises in the BSMs. The density and the flow estimations have an error of about 51%. 
Because the values for actual densities and flows are small, so the estimation error for these two 

variables is large. For speed estimation, the error is as small as 8%. Besides, the queue length and 

the link travel times are also estimated with the estimated traffic states. Both the link travel time 

estimation and the queue length estimation show high accuracy. 
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Figure. 52: Link travel time estimation under different penetration rates 

(a) 20% penetration (b) 40% penetration 

(c) 60% penetration (d) 80% penetration 

(e) 100% penetration 
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Figure. 53: Link queue length estimation under different penetration rates 

(a) 20% penetration (b) 40% penetration 

(c) 60% penetration (d) 80% penetration 

(e) 100% penetration 
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9 Tests with Detectors Measuring Input Flows 

9.1 Input flow measurement 

Figure. 54: Target road sections in AIMSUN 

For experiment using AIMSUN, detectors at one end of freeways are used to collect the input flow. 
Figure 54 shows the location of two target road sections, which are northbound and southbound 

of freeway I‐35W. In AIMSUN, one road is congested but the other is not during the morning peak 

hours (6:45am ‐ 7:30am), which provide the data for both congested scenario and uncongested 

scenario. Two sub‐figures at the upper right of Figure 54 shows the location of two detectors on 

target road sections to measure the input flow. Detector 1 is on southbound of freeway I‐35W 

and detector 2 is on northbound of freeway I‐35W. Because the time step for the Kalman filter is 
set to be 6 seconds, the number of vehicles entering the link is measured every 6 seconds. 
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For BSMs generated from radar data, to get the measurement of the input flow, we need to 

find the detector located at the beginning of the target road section. However, there is no detector 
installed on freeway that is at the edge of zone A (shown in Figure ??). Then the original radar data 

including 100% vehicles is processed to get the input flow to the road section. 
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9.2 BSMs from AIMSUN under uncongested scenario 
9.2.1 Density estimation   

Figure. 55: Density estimation with BSMs from AIMSUN (uncongested condition) 

(a) 5% penetration (b) 10% penetration 

(c) 15% penetration (d) 20% penetration 

(e) 25% penetration (f) 30% penetration 

(g) 35% penetration (h) 40% penetration 
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Figure. 56: Actual density in uncongested condition (100% vehicles) 

9.2.2 Speed estimation 

Figure. 57: Actual speed in uncongested condition (100% vehicles) 
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Figure. 58: Speed estimation with BSMs from AIMSUN (uncongested condition) 

(a) 5% penetration (b) 10% penetration 

(c) 15% penetration (d) 20% penetration 

(e) 25% penetration (f) 30% penetration 

(g) 35% penetration (h) 40% penetration 
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9.2.3 Flow estimation 

Figure. 59: Flow estimation with BSMs from AIMSUN (uncongested condition) 

(a) 5% penetration (b) 10% penetration 

(c) 15% penetration (d) 20% penetration 

(e) 25% penetration (f) 30% penetration 

(g) 35% penetration (h) 40% penetration 
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Figure. 60: Actual flow in uncongested condition (100% vehicles) 

9.2.4 Estimation error 

Figure. 61: Estimation errors with BSMs from AIMSUN (uncongested condition) 

(a) Overall error (b) Density error 

(c) Speed error (d) Flow error 

Figure 61 shows the error for the experiment under uncongested conditions using detector data 

for the first cell. As in Task 3, the speed error is the lowest as it is obtained through direct measure‐
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ment, while density error is the highest. In Task 3 there is a sharp decrease in error between cells 
1 and 2 that is not seen in the density and flow error charts in Task 4. It seems that the addition of 
detector observations in Task 4 dramatically reduce the error in cell 1 in both the density and flow 

estimates. The reduction in error in the first cell is reflected in the reduction in the mean error 
of flow and density, especially in the first few cells. Between Task 3 and Task 4, the mean density 

error drops from 48% to 32% for 5% market penetration, 40% to 32% for 10% market penetration, 
and 33% to 29% at 15% market penetration, and by about 3% for market penetrations of 20% to 

30%. Likewise, the mean flow error drops by around 5% for 5% market penetration, and between 

1% and 4% for 10% to 30% market penetration. The error for speed seems to be largely unchanged 

between Task 3 and Task 4. 
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9.2.5 Travel time estimation 

Figure. 62: Travel time estimation with BSMs from AIMSUN (uncongested condition) 

(a) 5% penetration (b) 10% penetration 

(c) 15% penetration (d) 20% penetration 

(e) 25% penetration (f) 30% penetration 

(g) 35% penetration 85 (h) 40% penetration 



Figure. 63: Actual link travel time in uncongested condition (100% vehicles) 

The link travel times are estimated using the estimated speed. It is calculated by summing up travel 
times in all cells. The estimation of link travel times show high accuracy. Under all penetration 

rates, the travel time is initially about 52 seconds, and then increases to about 70 seconds. There 

is no large difference between the travel time estimations in Task 3 and Task 4 so that adding 

detector data to the first cell does not help increasing the accuracy of travel time estimation. 

9.2.6 Queue length estimation 

Figure. 64: Actual link queue length in uncongested condition (100% vehicles) 

Queue length is also estimated, which is shown in 65. According to Figure 64, in uncongested 

scenario, there is no queue formed on the freeway. In Figure 65, when the market penetration is 
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small, some short queue are formed on freeway according to the estimation result. Comparing 

the estimation results in Task3 and Task4, there is no big difference. 
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Figure. 65: Queue length estimation with BSMs from AIMSUN (uncongested condition)

(a) 5% penetration (b) 10% penetration 

(c) 15% penetration (d) 20% penetration 

(e) 25% penetration (f) 30% penetration 

(g) 35% penetration (h) 40% penetration 
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9.2.7 The effect of increasing penetration rates 

Figure. 66: Effect of penetration rates to density estimation for cell 3 (congested condition) 

(a) 5% penetration (b) 10% penetration 

(c) 15% penetration (d) 20% penetration 

(e) 25% penetration (f) 30% penetration 

(g) 35% penetration (h) 40% penetration 
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Figure. 67: Effect of penetration rates to speed estimation for cell 3 (congested condition) 

(a) 5% penetration (b) 10% penetration 

(c) 15% penetration (d) 20% penetration 

(e) 25% penetration (f) 30% penetration 

(g) 35% penetration (h) 40% penetration 
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Figure. 68: Effect of penetration rates to flow estimation for cell 3 (congested condition) 

(a) 5% penetration (b) 10% penetration 

(c) 15% penetration (d) 20% penetration 

(e) 25% penetration (f) 30% penetration 

(g) 35% penetration (h) 40% penetration 
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9.3 BSMs from AIMSUN under congested scenario 
9.3.1 Density estimation 

Figure. 69: Density estimation with BSMs from AIMSUN (congested condition) 

(a) 5% penetration (b) 10% penetration 

(c) 15% penetration (d) 20% penetration 

(e) 25% penetration (f) 30% penetration 

(g) 35% penetration (h) 40% penetration 
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Figure. 70: Actual density in congested condition (100% vehicles) 

9.3.2 Speed estimation 

Figure. 71: Actual speed in congested condition (100% vehicles) 
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Figure. 72: Speed estimation with BSMs from AIMSUN (congested condition) 

(a) 5% penetration (b) 10% penetration 

(c) 15% penetration (d) 20% penetration 

(e) 25% penetration (f) 30% penetration 

(g) 35% penetration (h) 40% penetration 
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9.3.3 Flow estimation 

Figure. 73: Flow estimation with BSMs from AIMSUN (congested condition) 

(a) 5% penetration (b) 10% penetration 

(c) 15% penetration (d) 20% penetration 

(e) 25% penetration (f) 30% penetration 

(g) 35% penetration (h) 40% penetration 
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Figure. 74: Actual flow in congested condition (100% vehicles) 

9.3.4 Estimation error 

Figure. 75: Estimation errors with BSMs from AIMSUN (congested condition) 

(a) Overall error (b) Density error 

(c) Speed error (d) Flow error 

Figure 75 reveals that the trends found in the congested scenario mostly reflect those found in 

the uncongested scenario. The addition of the detector measurements decreases the error for 
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density and flow by significantly improving accuracy within the first cell while not significantly af‐
fecting the error for speed. However, the improvement to the flow error from Task 3 to Task 4 

is much more pronounced in the congested scenario than in the uncongested scenario. In the 

uncongested scenario, the mean flow error from Task 3 to Task 4 decreased by 1 to 5 points de‐
pending on the market penetration, whereas in the uncongested scenario the mean flow drops 
from 30% to 15% at 5% market penetration and drops from 17% to 14% at 30% market penetra‐
tion. The drop in mean flow error seems to be around 3 times larger in magnitude in the congested 

scenario compared to the uncongested scenario. The improvement in the density error in the con‐
gested scenario from Task 3 to Task 4 is less significant at lower market penetrations than it is in 

the uncongested scenario, as the error dropped by at most 5 percentage points compared to the 

maximum drop of 16 percentage points in the uncongested scenario, due to the comparatively 

low error in the Task 3 congested scenario compared to the Task 3 uncongested scenario. 
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9.3.5 Travel time estimation 

Figure. 76: Travel time estimation with BSMs from AIMSUN (congested condition) 

(a) 5% penetration (b) 10% penetration 

(c) 15% penetration (d) 20% penetration 

(e) 25% penetration (f) 30% penetration 

(g) 35% penetration 98 (h) 40% penetration 



Figure. 77: Actual link travel time in congested condition (100% vehicles) 

The link travel times are estimated, as shown in Figure 76. It starts from 50 seconds and then 

increases to about 120 seconds before it drops to 90 seconds. When the penetration rate is small, 
the travel time is overestimated which reflects the error in travel speed estimation is larger when 

the penetration rate is smaller. 

9.3.6 Queue length estimation 

Figure 79 shows the queue length estimation. According to actual values of queue length, queues 
are formed on freeway three times at about 1650, 2250, and 2600 seconds. Queue length is 
overestimated under penetration rates of 5% and 15% because these estimation results show 

more queues formed on freeway. Queue length is underestimated under penetration rates of 25%, 
30% and 35% because these results show that the queue only forms for one or two times. Overall, 
under the a penetration rate of 20% and 40%, the queue length estimation is more accurate than 

other penetration rates. 
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Figure. 78: Actual link queue length in congested condition (100% vehicles) 
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Figure. 79: Queue length estimation with BSMs from AIMSUN (congested condition)

(a) 5% penetration (b) 10% penetration 

(c) 15% penetration (d) 20% penetration 

(e) 25% penetration (f) 30% penetration 

(g) 35% penetration (h) 40% penetration 
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9.3.7 The effect of increasing penetration rates 

Figure. 80: Effect of penetration rates to density estimation for cell 3 (congested condition) 

(a) 5% penetration (b) 10% penetration 

(c) 15% penetration (d) 20% penetration 

(e) 25% penetration (f) 30% penetration 

(g) 35% penetration (h) 40% penetration 
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Figure. 81: Effect of penetration rates to speed estimation for cell 3 (congested condition) 

(a) 5% penetration (b) 10% penetration 

(c) 15% penetration (d) 20% penetration 

(e) 25% penetration (f) 30% penetration 

(g) 35% penetration (h) 40% penetration 
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Figure. 82: Effect of penetration rates to flow estimation for cell 3 (congested condition) 

(a) 5% penetration (b) 10% penetration 

(c) 15% penetration (d) 20% penetration 

(e) 25% penetration (f) 30% penetration 

(g) 35% penetration (h) 40% penetration 

In Section 9.3.7, the estimated density, speed, and flow for one cell (cell 3) is compared to their 
actual values, which is shown is Figures 80, 81, and 82. When the penetration rate gets larger, the 

fluctuation of the curve reduces. This phenomenon is obvious for density and speed estimation 

but not for flow estimation. 
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9.4 BSMs from radar data 

9.4.1 Density estimation 

105 

Figure. 83: Density estimation with BSMs from radar data 

(a) 5% penetration (b) 10% penetration 

(c) 15% penetration (d) 20% penetration 

(e) 25% penetration (f) 30% penetration 

(g) 35% penetration (h) 40% penetration 



Figure. 84: Actual density with BSMs from radar data (100% vehicles) 

9.4.2 Speed estimation 

Figure. 85: Actual speed with BSMs from radar data (100% vehicles) 
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Figure. 86: Speed estimation with BSMs from radar data 

(a) 5% penetration (b) 10% penetration 

(c) 15% penetration (d) 20% penetration 

(e) 25% penetration (f) 30% penetration 

(g) 35% penetration (h) 40% penetration 
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9.4.3 Flow estimation 

Figure. 87: Flow estimation with BSMs from radar data 

(a) 5% penetration (b) 10% penetration 

(c) 15% penetration (d) 20% penetration 

(e) 25% penetration (f) 30% penetration 

(g) 35% penetration (h) 40% penetration 
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Figure. 88: Actual flow with BSMs from radar data (100% vehicles) 

9.4.4 Estimation error 

Figure. 89: Estimation errors with BSMs from radar data 

(a) Overall error (b) Density error 

(c) Speed error (d) Flow error 

The overall shapes and values of the charts seen in Figure 89 from the Task 4 radar data error are 

very similar to those seen in the Task 3, but in some cases the error is larger in Task 4 than it is in 

Task 3. The density error still has a spike at cell 3, with a range of values between 100% and 160% 
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error. This is less accurate than in Task 3, which had a range of 90% to 130% error. This is reflected 

in the mean error in which the mean density error in Task 4 is between 4 and 10 percentage points 
greater than it was in Task 3, depending on the market penetration. The speed error seems to be 

relatively unchanged from Task 3 to Task 4, although the mean speed error may have gotten a 

percentage point or two worse in Task 4. The flow error is less accurate in Task 4, as seen in cell 1 

where the error ranges from 121% to 143% compared to cell 1 in Task 3 which ranges from 80% 

to 100% error. The mean flow error in Task 4 is between 5 and 10 percentage points greater than 

in Task 3. Normally, the estimation error for the first cell will drop if correct values of input flow 

is provided. As the estimation error for the first cell increases compared to the estimation error 
in Task 3, it can be concluded that the calculated values from vehicle trajectory information may 

have some errors. 
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9.4.5 Travel time estimation 

Figure. 90: Travel time estimation with BSMs from radar data 

(a) 5% penetration (b) 10% penetration 

(c) 15% penetration (d) 20% penetration 

(e) 25% penetration (f) 30% penetration 

(g) 35% penetration (h) 40% penetration 

111 



Figure. 91: Actual link travel time (100% vehicles) 

Figure 90 shows estimated travel time. When the penetration rate is larger than 25%, the travel 
time can be accurately estimated. When the penetration rate is small, the model tends to over‐
estimate the travel time which indicates that the speed is underestimated when the penetration 

rate is small. 

9.4.6 Queue length estimation 

Figure. 92: Actual link queue length (100% vehicles) 

Figure 92 shows the actual value for queue length. As the road is not congested, there is no queue 

formed. However, all tests overestimated the queue length as short queues are formed on road 

two or three times based on the estimation results. 
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Figure. 93: Queue length estimation with BSMs from radar data 

(a) 5% penetration (b) 10% penetration 

(c) 15% penetration (d) 20% penetration 

(e) 25% penetration (f) 30% penetration 

(g) 35% penetration (h) 40% penetration 

113 



9.4.7 The effect of increasing penetration rates 

Figure. 94: Effect of penetration rates to density estimation for cell 2 

(a) 5% penetration (b) 10% penetration 

(c) 15% penetration (d) 20% penetration 

(e) 25% penetration (f) 30% penetration 

(g) 35% penetration (h) 40% penetration 
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Figure. 95: Effect of penetration rates to speed estimation for cell 2 

(a) 5% penetration (b) 10% penetration 

(c) 15% penetration (d) 20% penetration 

(e) 25% penetration (f) 30% penetration 

(g) 35% penetration (h) 40% penetration 

115 



Figure. 96: Effect of penetration rates to flow estimation for cell 2 

(a) 5% penetration (b) 10% penetration 

(c) 15% penetration (d) 20% penetration 

(e) 25% penetration (f) 30% penetration 

(g) 35% penetration (h) 40% penetration 
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9.5 Discussion 

This section updates the model used for the last section by providing measurements for input 
flow to the target road section. The accuracy of the updated model are evaluated using BSMs 
from AIMSUN under both congested and uncongested conditions and BSMs prepared using radar 
data. Input flows for target road sections in AIMSUN are extracted by adding loop detectors at 
one end of the road before running the simulation. Input flows for the experiment using BSMs 
from radar data are extracted by processing the vehicle trajectory information. 

For the experiment using BSMs generated by AIMSUN, errors for density, speed, and flow are 

reduced by adding measurements for input flows compared to the estimation result in Task 3. The 

accuracy for travel time and queue length estimations are not changed compared to the estimation 

result in Task 3. 
In Task 4, the accuracy of the Kalman filter is much lower when applied to BSMs from radar 

data. The accuracy also drops when adding measurements of input flows to the model when 

comparing the estimation results in Task 3 and Task 4. One possible reason is that BSM data 

generated from radar data may have some errors which make the extracted values for input flow 

incorrect. 
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10 Experiments on a Large-scale Network with a Traffic Moni
toring System 

-

In this task, the project team create a traffic monitoring system that is capable of estimating traffic 
states using basic safety messages (BSMs) from a large traffic network. The efficiency of the system 

is tested using BSMs generated by a microscopic simulation model. 

10.1 BSM traffic monitoring system 

10.1.1 System structure 

Figure. 97: System structure 

As shown in Figure 97, the traffic monitoring system has three components: the data collection 

module, and the data transmission module, and the data processing module. The data collection 

module has multiple road‐side units (RSUs) covering major roads of the traffic network. RSUs 
collect BSMs from equipped vehicles every 0.1 sec. BSMs collected by RSUs are then uploaded to 

an online server, which uses ”Postgres” as its main database management system. On the server, 
each database includes all BSMs collected from a network with a fixed penetration rate. Each 

table in a database stores BSMs collected by an RSU. The database also includes the geometry 

information of road sections covered by each RSU, such as lane number, road length, on‐ramp 

number, and off‐ramp number. The server enables all computers to access the database remotely 

with granted account, password, and IP address. In the data processing module, traffic states of 
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target road sections are estimated by one or multiple computers. After the traffic state estimation, 
the results are stored in several local databases. 

10.1.2 BSMs generation environment 

BSMs for this task is generated by a calibrated microscopic simulation model in AIMSUN. Figure 

98 shows the road network included in the simulation model. This network covers the city of 
Richfield, and part of the cities of Bloomington, Edina and Minneapolis. Freeway I‐35w and I‐494, 
and highway 62 and 77 are also included in the model. There are 69 road‐side units (RSUs) set 

Figure. 98: Target test area 

in the network, and each RSU is capable to collect BSMs for equipped vehicles from several road 

sections. Figure 99 shows an example of the detection range of two RSUs represented by the 
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orange box and the yellow box respectively. BSMs from vehicles on sections 1 and 2 are collected 

by RSU 1 and BSMs from vehicles on sections 3, 4, 5, and 6 are collected by RSU 2. These sections 
have different lane numbers and connect to different number of on‐ramps or an off‐ramps. For 
example, section 1 in Figure 99 has four lanes but section 2 has five lanes. Section 2 has an off 

ramp but section 1 is merged with an on ramp. 

10.1.3 Kalman filter generation 

In the detection range of an RSU, two road segments with different lane numbers are considered 

as two RSU sections. To initialize a Kalman filter, the geometry information of an RSU section, 
such as lane number and section length, is needed. The time step size ∆t is set to be 6 sec in this 
project, which indicates that the Kalman filter estimates traffic states every 6 seconds. A smaller 
time step size can result in a larger computation time. In a Kalman filter, the road section is divided 

into several cells, which is the basic unit for traffic state estimation. The cell length l is calculated 

by the following equation: 
l ≥ u0

f ∆t (33) 

where u0 
f is the free flow speed. The cell length is usually equal to the time step size ∆t times 

the initial value of the free‐flow speed u0 
f , then the number of cells for an RSU section can be 

calculated using the section length L divided by the cell length l. If the remainder of L/l is too 

small, which violates inequality (33), the last cell in the RSU section will use a larger cell length. 
For example, if the cell length is 600 ft, and the section length is 1300, then the first cell uses a cell 
length of 600 ft and the second cell use a cell length of 700 ft. 

For two connected RSU sections that belong to the same RSU detector range, the estimated 

flow going out of the upstream section is used to calculate the input flow of the downstream 

section, as shown in both Figures 100 and 101. Moreover, if a road or several connected roads are 

covered by multiple RSUs, then these RSUs can form an RSU group, as shown in Figure 100. The 

estimated flow going out of last RSU section covered by the upstream RSU can be used to calculate 

the input flow to the first RSU section covered by the downstream RSU. If the detection ranges of 
two RSUs are not connected, then these two RSUs still belong to different RSU groups, as shown in 

Figure 101. Before the start of traffic state estimation, the traffic monitoring system can generate 

a list of RSU groups given the list of activated RSUs and network geometry information. 

10.2 Experiments with the traffic monitoring system 

The efficiency of the system was tested in two scenarios under different penetration rates. The 

two scenarios evaluate the computational requirements for combining different numbers of RSUs 
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Figure. 100: Examples of connected RSU 

Figure. 101: Examples of separated RSU groups 

as input data for one traffic state estimator, at different market penetrations. Using multiple RSUs 
as input to a single traffic state estimator results in modeling a larger section of road and also 

increases the number of data points input per time step. However, as seen in Tasks 3 and 4, 
much of the error in the traffic state estimation occurs at the start of the road segment because 

limited data is available on input flows. Combining RSUs to model a larger segment of road could 

therefore reduce the error at the cost of requiring additional input data (and correspondingly 

higher computation times). Higher market penetrations also increase computation times due to 

providing more input data. 

10.2.1 Simulated BSM data 

The Minnesota Traffic Observatory (MTO) constructed an Aimsun model of the freeway network in 

the Minneapolis/St. Paul metropolitan region. The original plan was to add RSUs that covered the 

entire freeway network and conduct traffic state estimation. Unfortunately, due to the large com‐
putation time, as well as limited time by engineering personnel, only 10 RSUs were implemented 

for data collection. Data was collected for 12,600 seconds (3.5 hours) of simulation. We have re‐
sults from scenarios including 10 RSUs combined into one traffic state estimation (the worst case 

for computation time) and each RSU individually. 

10.2.2 Experiment scenarios 

In the first scenario, there are 10 RSUs activated in the experiment (shown in Table 11). Most RSUs 
are located on freeway ramps that connect two main directions of freeways. All these RSUs are 
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isolated from each other, so there are 10 RSU groups created in this scenario and each RSU group 

only includes one RSU. The second scenario activates 10 RSUs on freeway I–35 (shown in Table 

12). These RSUs are connected and they form one RSU group covering the entire freeway section. 
For each scenario, there are four penetration rates test: 20%, 40%, 60%, 80&. A penetration 

rate only means a proportion of vehicles in the entire network are equipped vehicles, instead of 
making the proportion of equipped vehicles in target road sections equal to the penetration rate. 
For example, a penetration rate of 20% does not guarantee that 20% of vehicles on the detection 

section of RSU 10 are equipped. 

Table 11: Activated RSUs in scenario 1 

RSU name cell number total length (ft) 

rsu10_62_WB 3 1992.64 

rsu16_77_SB 7 4123.45 

rsu19_77_SB 2 1712.61 

rsu2_35_NB 4 2447.68 

rsu25_494_WB 3 2181.38 

rsu27_494_WB 3 2046.76 

rsu28_494_EB 3 2096.03 

rsu30_494_EB 6 3956.48 

rsu31_494_WB 3 604.46 

rsu32_494_EB 3 2197.61 

Total 37 23359.1 
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Table 12: Activated RSUs in scenario 2 

RSU name cell number total length (ft) 

rsu40_35_NB 3 2022.7 

rsu68_35_NB 4 1919.45 

rsu37_35_NB 8 4651.14 

rsu67_35_NB 3 1329.47 

rsu2_35_NB 4 2447.68 

rsu66_35_NB 2 1332.39 

rsu65_35_NB 6 4276.83 

rsu43_35_NB 3 1941.04 

rsu5_35_NB 4 2850.98 

rsu62_35_NB 5 2915.1 

Total 42 25686.78 
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Figure. 102: Actual traffic states for scenario 1 

(a) 100% densities in scenario 1 

(b) 100% speeds in scenario 1 

(c) 100% flows in scenario 1 
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Figure. 103: Actual traffic states for scenario 2 

(a) 100% densities in scenario 2 

(b) 100% speeds in scenario 2 

(c) 100% flows in scenario 2 
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10.2.3 Ground truth database preparation 

The ground truth database needs to be prepared in advance to compare with the estimated results 
based on equations mentioned in section 6.1. Computation times used for extracting traffic states 
from 100% BSMs using Edie’s method for first scenario and the second scenario are 4 hours and 8 

hours respectively. 
Figures 102a, 102b, and 102c show the actual traffic states (density, speed, and flow) detected 

by all ten RSUs in scenario 1. Red color represents traffic congestion. The road segments covered 

by the first few RSUs are not congested condition while the road segments covered by the last two 

RSUs are congested. Figures 103a, 103b, and 103c show the actual traffic states in scenario 2. 
Figures 103a, 103b, and 103c show the actual traffic states detected by ten RSUs in scenario 

2. At the bottom of these figures, we can observe the propagation of the traffic congestion from 

the detection area of RSU 43 to RSU 65. This traffic congestion generates at time step 1235 and 

disappears at time step 1635, which lasts 40 minutes. 

10.2.4 Computation time 

One important objective of this task is to test if the traffic monitoring system is able to operate 

in real time, when it is implemented in a large scale network. If one computer cannot run the 

system in real‐time, what is a reasonable number of computers that can make it run in real‐time. 
To determine if this system can run in real‐time, we can compare the computation time with the 

simulation time, or compare the computation time in each time step with time step size (6 sec in 

this study). The computation time for this system is mainly composed of the time used for running 

SQL query and for running the Kalman filter to get estimated traffic states. For this task, we used 

computers with Intel Xeon processor (3.60 GHz) with 32 GB RAM. 
Table 13 shows the average computation times under two scenarios on one computer. As 

the penetration rate increases, the computation time increases as well. In this traffic monitoring 

system, an increase in penetration rate does not increase the complexity of the Kalman filter for 
the same scenario, so the main factor that contributes to a larger computation time is the increase 

in running SQL query and collecting BSMs from the server. With a larger penetration rate, more 

BSMs need to be collected and processed. In scenario 1, it took 4927 seconds (1.4 hours) to finish 

the computation for 10 RSUs. As the duration of the experiment in AIMSUN is set to be 12600 

seconds (3.5 hours), the traffic monitoring system can be implemented in a traffic network when 

the penetration rate is about 20% with only one computer. For this scenario with 20% BSMs, if we 

use ten computers to run the experiment, each computer will only spend 9 minutes on the traffic 
state estimation. Moreover, we find all experiments for scenario 1 can be run in real‐time using 
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only one computer as the computation time for 10 RSUs is smaller than the simulation time (12600 

seconds (3.5 hours)). In scenario 2, the system cannot run in real‐time with only one computer. 
All experiments for scenario 2 have a computation time longer than the simulation time (12600 

seconds (3.5 hours)). The computation time for scenario 2 is longer than scenario 1 because the 

traffic volume and the detection area in scenario 2 are much larger than those in scenario 1 and 

the Kalman filter in scenario 2 is more complicated than that in scenario 1, which has more cells 
and inter‐cell interaction. For scenario 2, multiple computers can be used to compute the traffic 
state and to make the system work in real‐time. When the penetration rate is 20%, there should 

be at least two computers to make the system operate in real time. When the penetration rate 

is 80%, the computation time is 36237 seconds (10 hours), which is one hour for each RSU on 

average. A computation time of one hour for each RSU is still smaller than the simulation time of 
the test. It means if there 10 computers running programs for 10 RSUs separately, the system can 

still operate in real time. 

Table 13: Computation times 

scenarios penetration rate computation time % of real time 

10RSU 20% 4927 sec/10 RSUs 39% 

10RSU 40% 6806 sec/10 RSUs 54% 

10RSU 60% 10740 sec/10 RSUs 85% 

10RSU 80% 12087 sec/10 RSUs 96% 

I35 20% 13213 sec/10 RSUs 105% 

I35 40% 19468 sec/10 RSUs 155% 

I35 60% 25419 sec/10 RSUs 202% 

I35 80% 36237 sec/10 RSUs 288% 

10.2.5 Estimation accuracy 

The estimation accuracy of the system is evaluated with the ground truth traffic states. Figure 104 

shows the estimated density as well as the actual density measured by using BSMs from 100% 

equipped vehicles in scenario 1. Each row of the heatmap corresponds to a cell. The first to the 

last cell corresponds to each cell in the detection range of each RSU listed in Table 11. As the first 
RSU in Table 11 is RSU 10 and this RSU has three cells, so the first three rows in the heatmap show 

the result of RSU ”rsu_62_WB”. The detection area of an RSU can be divided into multiple cells. 
In the last three rows of the heatmap of Figure 104e, there are two time periods that the road 

is congested. All estimated results show these two congested periods. However, for the fourth to 
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the last RSU (RSU 28), the error is large. This section is estimated to be congested, which differs 
from the actual condition. The estimated result for all uncongested road sections seems to be 

reasonable. When the penetration rate is more than 60%, the estimated result show to have two 

congested time periods for RSU 28. 
Figure 105 shows the speed estimation in scenario 1. Figures 105c and 105d are more similar 

to the actual speed measurement. When only BSMs from equipped vehicles are collected, as 
these vehicles are not uniformly distributed in the network, their travel states will represent the 

traffic condition of the area they are currently in. In Figure 105b, the right bottom corner of the 

heatmap does not show a heavy traffic due to a normal average speed of detected vehicles. Figure 

106 shows the flow estimation. All estimations show an similar pattern as in the heatmap for actual 
flows except for RSU 31. 

Figure 107 shows the density estimation in scenario 2. When the penetration rate is lower 
than 80%, the traffic congestion only generates in the detection area of RSU 43 but the conges‐
tion should propagate to the detection area of RSU 65. The estimation result with 80% penetration 

rate can produce this phenomenon. In the speed estimation (shown in Figure 108), we can find 

that the estimation result overestimates the congestion generated at the upstream of freeway, 
which is in the detection areas of RSU 68 and RSU 37, but underestimates the congestion at the 

downstream of the freeway. Figure 109 shows the flow estimation in scenario 2. The flow es‐
timation is calculated based on the density estimation, so the heatmap of flow estimation has 
a similar pattern to the heatmap to the density estimation. However, the actual flow shows a 

different pattern from the actual density when comparing Figure 109e and Figure 107e). 
Tables 14, 15, 16, and 17 show the estimation errors under different penetration rates for 

two scenarios. As penetration rate increases, there is no clear trend showing an increase in the 

accuracy. As the penetration rate is set for the entire network rather than for the target area so 

the actual penetration rate for each area may differ. A increase in the penetration rate for the 

entire network may not guarantee an increase in the penetration rate in the target area. Besides, 
in the experiment, the entering flow to the section and the flows on on ramps are unknown, which 

contributes most errors in the system. In this system, we estimated these input flows using the 

measured flow divided by the penetration rate. As the penetration rate set for the entire network 

is not equal to the penetration rate on the target road section, increasing the penetration rate 

does not result in a better estimate for all input flows. 
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Figure. 104: Estimated densities in scenario 1 

(a) 20% penetration (b) 40% penetration 

(c) 60% penetration (d) 80% penetration 

(e) 100% penetration 
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Figure. 105: Estimated speeds in scenario 1 

(a) 20% penetration (b) 40% penetration 

(c) 60% penetration (d) 80% penetration 

(e) 100% penetration 
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Figure. 106: Estimated flows in scenario 1 

(a) 20% penetration (b) 40% penetration 

(c) 60% penetration (d) 80% penetration 

(e) 100% penetration 
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Figure. 107: Estimated densities in scenario 2 

(a) 20% penetration (b) 40% penetration 

(c) 60% penetration (d) 80% penetration 

(e) 100% penetration 
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Figure. 108: Estimated speeds in scenario 2 

(a) 20% penetration (b) 40% penetration 

(c) 60% penetration (d) 80% penetration 

(e) 100% penetration 
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Figure. 109: Estimated flows in scenario 2 

(a) 20% penetration (b) 40% penetration 

(c) 60% penetration (d) 80% penetration 

(e) 100% penetration 
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Table 14: Estimation error for scenario 1 (absolute value) 

scenario penetration density error speed error flow error 

10RSU 20% 96.5 veh/mile 7.52 mile/hour 2586 veh/hour 
10RSU 40% 98.2 veh/mile 7.67 mile/hour 2586 veh/hour 
10RSU 60% 90.7 veh/mile 7.13 mile/hour 2586 veh/hour 
10RSU 80% 93.9 veh/mile 7.07 mile/hour 2580 veh/hour 

Table 15: Estimation error for scenario 1 (relative error) 

scenario penetration density error speed error flow error 

10RSU 20% 0.90 0.14 0.99 

10RSU 40% 0.91 0.14 0.99 

10RSU 60% 0.84 0.13 0.99 

10RSU 80% 0.87 0.13 0.99 

Table 16: Estimation error for scenario 2 (absolute value) 

scenario penetration density error speed error flow error 

I35 20% 82 veh/mile 6.17 mile/hour 3498 veh/hour 
I35 40% 83 veh/mile 5.16 mile/hour 3174 veh/hour 
I35 60% 84.6 veh/mile 5.23 mile/hour 3174 veh/hour 
I35 80% 79.6 veh/mile 4.74 mile/hour 3174 veh/hour 

Table 17: Estimation error for scenario 2 (relative error) 

scenario penetration density error speed error flow error 

I35 20% 0.91 0.11 0.99 

I35 40% 0.92 0.09 0.99 

I35 60% 0.93 0.09 0.99 

I35 80% 0.88 0.08 0.99 

136 



10.3 Discussion 

In this section, the project team created a traffic monitoring system to estimate traffic states in 

a large scale traffic network. In the traffic monitoring system, the data input is BSMs generated 

by a microscopic simulation model. The data is stored on a server and can be accessed by any 

granted computer remotely. Scenarios under different penetration rates are used to test the ef‐
ficiency of the system. The result shows that one computer is enough for running the system in 

real‐time for the first scenario but is not enough for the second scenario. Among all experiments, 
the one using 80% penetration rate in scenario 2 takes the longest computation time (10 hours) 
on one computer, but if there are multiple computers running programs for each RSU separately, 
the system can operate in real time. Computation time may further decrease in the future due 

to improvements in computer processor technology and/or further improvements in the traffic 
state estimation algorithm. If traffic state estimation is performed for each RSU individually, one 

computer could process around 6–7 RSUs. Based on the number of RSUs required for the en‐
tire freeway network, these numbers may provide an estimate for the computational resources 
required. 
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11 Research Benefits and Implementation Steps 

BSMs include vehicle travel information such as the coordinate, speed, and acceleration, which 

can be utilized to estimate traffic states on the road. However, since the regulation requiring 

vehicles to have this functionality has not yet been made official, it may take several years before 

a significant number of vehicles will even begin to transmit this information. Still, the proper 
methodology and models can be developed now to ensure that the state can immediately take 

advantage of BSM technology when it is inevitably implemented into vehicles. Even a small market 
penetration of BSM‐transmitting vehicles provides traffic state information through their speed 

choices. 

11.1 Benefit 

The expected benefits from this research encompass several categories. Table 18 below provides 
an overview of these benefits. 

11.1.1 Improved Traffic Information 

Traditional loop detectors are installed at several spots on the road while BSMs can cover the entire 

road section. Loop detectors can only provide the traffic state measurement for the position where 

they are installed. The traffic states include flow, time‐mean speed, and density. Traffic density 

is not the direct measurement of loop detectors but is calculated with measured flow and speed. 
The measured time‐mean speed is the average speed of vehicles crossing the loop detector and 

it cannot reflect the traffic condition for a road section. The traffic state estimator using BSMs 
in this study provides traffic state estimation for each cell of the road section, including traffic 
density, flow, and space‐mean speed. Space‐mean speed is the average speed of all vehicles that 
pass through a target area on the road, which can be a better representative of traffic efficiency. 

Table 18: Expected Research Benefits 

Benefit Category 
Key categories 
applicable to this project 

Are the 
benefits quantifiable (Yes/No) 

How will these benefits be 
quantified? 

Improved Traffic Information X Y 
Before/after traffic information 
accuracy comparison (e.g. accuracy of travel time) 

Decrease Engineering/ 
Administrative Costs 
Reduce Road User Costs X Y Comparison of travel times 
Reduce Environmental 
Impact 
Improved Safety 

Operation and Maintenance Saving X Y 
Monetary difference between 
fixed sensors versus BMS equipment 

Reduce Risk 
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The test results all show that the speed measurement has a high accuracy even with small market 
penetration. When the traffic state for the entire road is given, the road operators can update 

their current strategies to take advantage of the higher resolution of the space and time traffic 
information inferred through the BSMs. It can also help road operators to upgrade their road 

control policies to new ones that require richer input data. 

11.1.2 Reduced Road User Costs 

Travel times experienced by drivers in the state will also see improvements. When improved traf‐
fic information are used in traffic control, such as ramp meters and adaptive signals, the traffic 
efficiency can be improved because of more precise utilization of travel controls. Previous studies 
have shown that adaptive signal control can improve travel time by 10 percent or more (28). Ad‐
ditionally, a MnDOT study of ramp metering in the Twin Cities area noted 22 percent in savings for 
freeway travel time (38). The benefits of these signals and ramp meters can be better reaped if 
more accurate traffic information is available. Besides, if drivers can get access to the traffic state 

estimations, they can switch to a path with a higher travel speed than the current path, which may 

reduce the travel time for their trip. 

11.1.3 Operation and Maintenance Savin 

As the penetration rate of BSM‐equipped vehicles increases over time, less reliance on fixed sen‐
sors will be needed. Loop detectors at one end of the road section may still be needed to im‐
prove the estimation accuracy. As the amount of the loop detectors reduces, the need and cost 
to maintain the replace these fixed sensors also decrease. The installation costs for one loop de‐
tector sensor can be somewhere around the $500 range, and with the temperamental quality of 
these sensors, the replacement of them can end up being semi‐frequent (29). This will lead to 

both monetary savings when considering the cost of purchasing the sensors, and savings in labor 
because there will be less needs to maintain or repair these sensors. 

11.1.4 Implementation 

At first, a traffic state estimation algorithm was developed based on the Kalman filter technique. 
The Kalman filter technique is used to integrate the prediction model and measurement. In this 
project, the cell transmission model is used as the prediction model to predict the traffic state. 
The measurement in this project is speed measurement extracted from BSMs. The Kalman filter 
is able to generate an estimation with a smaller uncertainty than both the predicted value and 

the measurement. The traffic state estimator is able to estimate the traffic state under different 
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penetration rates, as well as integrating data inputs from BSMs and loop detectors. When the 

cell transmission model is used as the traffic flow model, the target road section is divided into 

several short road segments called ”cell”, which is the basic unit for the traffic state estimation in 

this project. The output of the traffic state estimator is the density, speed, and exiting flow for 
each cell. This part of the work is covered by Task 1 and Task 2. After the development of the 

traffic state estimator, the accuracy of the traffic state estimation was evaluated with different 
test datasets, including BSM datasets generated from a CTM‐based model, a microscopic simula‐
tion model, and radar data. The ground truth databases including the actual traffic state for each 

cell is also prepared for the accuracy test. To explore the required computing power to run the 

traffic state estimator in real‐time, a traffic monitoring system is constructed, which is consisted 

of a data collection module, a data transmission module, and a data processing module. The data 

collection module includes an online server with multiple databases in which the BSMs are gen‐
erated from a microscopic simulation model corresponding to a large‐scale network. This part of 
the work is covered in Task 3, 4, 5, and 6. If this traffic state estimator is implemented in the field, 
some infrastructures are required. First, there must exist some type of infrastructure which is ca‐
pable of serving as receptors for the BSM information that is being broadcast. These receptors 
will need to be placed at specific points where vehicle data is of interest. A study from NHTSA 

entitled “Vehicle‐to‐Vehicle Communications: Readiness of V2V Technology for Application” de‐
tails information about cost estimates of implementing equipment for BSM technology (15). In 

this study, it is estimated that a DSRC roadside receptor will initially cost approximately $8,800 

per site. This is based on the assumption that the receptor would need to be replaced once every 

fifteen years and that there is an annual maintenance cost of approximately $7,500 per site. To 

put it into perspective, the study estimates that 19,750 roadside receptors will be needed to cover 
74% of the nation’s population. See Table 19 blow from this study which summarizes the costs of 
DSRC receptors. 
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12 Functional Specifications 

12.1 Introduction 

Connected Vehicles (CVs) have the potential to change transportation fundamentally. Though CV 

applications for safety, mobility and environmental benefits are exciting, the implications of BSMs 
that all CVs will broadcast must also be considered. Can a BSM‐based monitoring system (BSMMS) 
potentially replace current traffic measurement collection infrastructure? The following is a con‐
sideration of functional specifications for a BSM‐based system to be able to be used for gathering 

traffic metrics, based on literature. For the purposes of this report, DSRC is assumed to be the 

most common way of broadcasting and receiving BSMs. Other technologies such as Auto5G and 

Cellular‐V2X (C‐V2X) are being considered by certain companies for their existing infrastructure 

(cell towers) and range (wherever there is cell service). A drawback of C‐V2X is potential cost as 
well as turning traffic data over to third party companies. Again, this report assumes DSRC will be 

the primary BSMMS and elaborates how and if the cellular communication path makes a differ‐
ence. 

12.1.1 Current Traffic Data Collection System and needs 

In order to better define the functional specifications of a BSMMS it is important to summarize 

the currently used traffic data collection systems and more importantly the critical systems they 

support. It stands to reason to assume that moving forward with a BSMMS means expanding 

traffic operation and traffic monitoring abilities without compromising current critical operations. 
The Minnesota Department of Transportation (MnDOT) Regional Transportation Management 

Center (RTMC) oversees the systems controlling close to a million vehicles daily in the Twin Cities 
area. The RTMC’s goals include: 

• Reduce crashes and congestion 

• Increase freeway capacity 

• Increase freeway speeds during peak periods 

• Provide accurate, timely traffic information to travelers 

• Remove stalled vehicles by FIRST 

• Assist State Patrol with Incident management 

• Enhance service for transit and carpoolers 

141 



To support these goals, the RTMC requires data from the roadway, both real time and historic. 
To increase safety and throughput on existing roads, there are two options: reconstruction, or 
operating the road more efficiently. Reconstruction involves looking at historic, sampled, and 

discontinuous data. This data could be aggregated; fine, real time data is not required to make 

decisions about road geometry. In many cases, the expense and time of reconstruction make it a 

suboptimal solution. Many of the RTMC’s systems and functions instead focus on operating the 

existing roadways more efficiently. 

12.1.2 How are traffic metrics captured today? 

RTMC equipment includes, as of 2014: 

• CCTV Freeway Cameras – 600 

• Loop Detectors in roadways – 5500 

• Radar Detectors (Wavetronix) – 230 

• Lane Control Signals – 300 

• Dynamic Message Signs – 184 

• Ramp Meters – 443 

• HOT lanes 

• 511 information 

The loop detectors are single detectors; they can only provide an estimate of average speed 

to be used to determine density, along with flow, which is derived from counting the number of 
vehicles passing the detector in a 30 second period. MnDOT has also begun to deploy Wavetronix 
radar, which captures true speed rather than an estimate of it. Even with accurate speed, density 

remains an estimate. 

Reducing Crashes and Congestion 

Crash data is collected to identify dangerous areas of the roadway. To discover which areas of 
the roadway are experiencing abnormal amounts of crashes that need to be addressed, the num‐
ber of crashes per volume of the roadway needs to be considered. The Average Daily Traffic (ADT) 
on the roadway is required to determine where an abnormal amount of crashes is happening. 
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To measure congestion on the roadway, a benchmark speed must be set and measured. Mn‐
DOT considers anything less than 45mph on the freeway to be congested; how much congestion a 

freeway experiences is measured by how many 30 second intervals the traffic moves at less than 

45mph per day. 
Another aspect of congestion is how long it spreads on the roadway. Loop detectors are placed 

every half a mile in an effort to capture gapless data from the roadway. This allows congestion to 

be tracked; the more seamless the data, the more accurately the cause and extent of congestion 

can be identified. 
When deciding if reconstruction is appropriate for a roadway, a benefit cost analysis must be 

conducted with available data. If the number of crashes, hours of congestion or number of people 

affected by it are not enough, it may not be worth reconstructing the roadway. The total delay 

caused by congestion must be calculated. This is done using speed and the number of vehicles 
travelling at that speed; the delay of the average vehicle multiplied by the total volume on the 

roadway gives the total delay, or the amount of money lost to congestion. 

Improving Freeway Operations 

To improve operations, real time data is required; speed and volume dictate the quality of the 

traffic and the driver experience. Capturing the finest data possible will allow for better decisions 
to be made, and better strategies and policies to be implemented to affect the current roadway 

without the time or expense of reconstruction. 
The RTMC’s goals of Increasing freeway capacity and speeds during peak periods are both 

another way to say increasing throughput. The freeway capacity is controlled by the environ‐
ment and geometry; the only way to directly change capacity is by widening a facility. To increase 

throughput, the facility must be operated as close to capacity without congestion; this will pro‐
duce throughput and increase the production of the roadway. 

So if the geometry cannot be changed to easily accommodate higher numbers of vehicles, 
how can the throughput of the roadway increase? The RTMC offers many services and systems to 

reduce congestion. If congestion is lessened and roadway speeds increased, the throughput will 
increase as well. Additionally, systems like ramp metering and driver information (either on the 

roadway, or through services like 511), help keep the volume on the roadway within an acceptable 

level. Controlling the number of vehicles on the roadway is another way to increase capacity for 
vehicles on that roadway. 
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Controlling Demand 

Three strategies and systems that the RTMC uses to control the number of vehicles on the gen‐
eral purpose roadway include ramp metering, MnPASS (also known as HOT lanes), and providing 

information to drivers to influence their decision making. 
The first ramp meter in MN was installed in 1969 along I‐35E; in 2019, there are 433 ramp 

meters active in the Twin Cities metro area. Ramp metering helps reduce congestion on the free‐
way as well as back up from the freeway entrance ramp. Ramp metering looks at the average 

density of all general purpose lanes, but uses some lane‐by‐lane data to ignore traffic in auxiliary 

lanes or MnPASS lanes. In 2001, when ramp meters were turned off for a period of time, a sig‐
nificant spike in congestion on the freeways was observed. Ramp metering depends on density 

estimates (based on volume and density) reported up to three miles away from the ramp in real‐
time; ramp meters are adjusted every 30 seconds based on that data. When studied in 2000, ramp 

metering resulted in over 25,000 hours of travel time saved, much more reliable travel time than 

without, safer roadways, and a net monetary benefit outweighing the system’s cost to operate. 
Though drivers may not appreciate ramp metering while they are queueing on the ramp, the sys‐
tem certainly is beneficial to keeping highways safe and as uncongested as possible, and depends 
on accurate and timely measurements from the rest of the roadway to function. 

MnPASS, MnDOT’S High Occupancy Toll (HOT) lanes, relies on density estimates to function 

properly. MnPASS lanes are priced dynamically based on density in the MnPASS lane only. Detec‐
tors in the pavement measure the traffic volume in 30 second intervals and gather average speeds 
to estimate the density in the lane; as congestion in the lane increases, the fee to drive in the lane 

increases, and as it decreases, so does the fee. Note that this only looks at the MnPASS lanes, not 
general purpose lanes. By federal law, speed in the MnPASS Express Lane must be at or above 

45 miles per hour for 90% of the time; currently, speeds are at 45 miles per hour approximately 

95% of the time, and MnDOT reports that during peak‐travel times, one MnPASS lane can carry 

the same number of people as two general purpose lanes. Overhead digital (VMS) signs show the 

current price for one or two segments along the corridor. The price on the sign is updated every 

three minutes depending on the current demand in the MnPASS lane. 
The public makes use of real time data provided by the RTMC through the 511 phone line, 

website, and app. 511 provides users with congestion, construction, and incident data. In 2014, 
almost 300,000 calls to 511 were reported. The website had nearly 4 million visitors, and the 

app had 92,000 downloads in less than a year from its launch. 511 provides varying levels of 
detailed traffic and incident reports, depending on which view a user chooses. Additionally, 511 

offers support for the trucking industry, with a trucking‐specific section of the website. Services 
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like Google Maps also take data from the 511 system to supplement the probe data from mobile 

phones and to alert drivers to incidents or congestion. With all this information readily available 

at near real time, drivers can make educated choices about which path they would like to take to 

their destination. 

Improving the Freeway for Remaining Vehicles 

There is a fine line between a freeway operating near capacity and one that has broken down. 
A system functioning well will still have smooth traffic even with high demand, ideally with drivers 
making no sudden stops to lead to shockwaves or crashes. Real time tools such as: 

• Travel Time Information Displays 

• Advisory Speed Limits 

• Queue Warning 

• the Smart Work Zone Speed Notification System (SWZN) 

• Variable Message Signs (VMS) or Dynamic Message Signs (DMS) 

Can all help influence drivers on the roadway to anticipate congestion and react appropriately 

as they approach it. Most of these applications depend on real‐time, lane‐by‐lane data. The travel 
time information algorithm, like ramp metering, ignores speeds in both auxiliary lanes and MnPASS 

lanes. It focuses on the general purpose lanes’ speeds to calculate the travel time, and display it 
to drivers. The RTMC does not post travel time information in the MnPASS lane, but it does look 

at travel times there to monitor performance. 
Though advisory speed limits are no longer used in Minnesota, when it was operational, the 

system looked at average speeds in the general purpose lanes to display warnings to drivers. The 

system didn’t post lane by lane advisory speed limits, but needed lane by lane data to ignore 

auxiliary lanes and MnPASS lanes. 
Queue warning, though still experimental, looks at average speeds in the general purpose 

lanes to warn drivers of upcoming congestion. MnDOT has used a type of Queue Warning, the 

Smart Work‐Zone speed Notification (SWZN) system, to specifically notify drivers about changing 

conditions on the roadway as they approach a work zone. 
Currently, lane control signals (LCS) are operated in Minnesota by trained camera operators, 

not automatically based on an algorithm. Queue warning strives to be fully automatic; detect the 

queue, turn on the driver warning sign. Additionally, DMS may be used to reroute vehicles from 

incidents. 
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Incident Management 

To manage incidents, MnDOT uses a fleet of FIRST patrol trucks, and assists the State Patrol 
with diverting traffic. Not all of MnDOT’s functions require traffic metrics to operate. For example, 
FIRST responders detected 85% of incidents by driving their assigned routes and noting vehicles 
causing issues with traffic flow, rather than from RTMC alerting them to an issue. If a detector has 
a sudden spike in congestion and an incident is suspected, the call will still go out to FIRST from the 

RTMC. Before drivers began carrying cell phones, this was a much larger part of FIRST response. 
A part of assisting the State Patrol with incident management is making sure that traffic diver‐

sions due to incidents are appropriate for the volume on the roadway to be diverted. The ADT 

of the roadway and capacity of other roads for diversion must be known. Historic data can be 

used for determining demand, by looking at finely spaced measurements throughout the day of 
volume and space on roads; real time data can be used to look upstream, see the volume that is 
approaching the incident site, and find an appropriate roadway to divert it to. Integrated Corridor 
Management may also be used when diverting traffic onto a signalized road, to change signal tim‐
ing based on the anticipated volume from the diverted road. The best way to appropriately divert 
traffic would be to monitor the entire corridor– freeway and arterials– for real time volume. 

Transit Enhancement 

Transit and carpools are able to use the MnPASS lane for free. This encourages less overall 
vehicles on the roadway, due to the higher capacity of transit vehicles and the requirement of at 
least two passengers to use the MnPASS lane freely during peak hours. 

Tools for Real Time Data Capture 

Currently, the RTMC uses CCTVs for operation and traffic control, DMS for driver communica‐
tion, and LCS for direct effects on the roadway. Loop detectors and radar are used for information 

gathering, both historic and real time. 

12.1.3 What do connected vehicles broadcast? 

A BSM is a packet of data broadcasted by a Connected Vehicle (CV). BSMs can be received by 

other vehicles (V2V), by infrastructure (V2I), or by anything else that is listening (V2X). BSMs are 

used for various applications, falling under the headings of safety, mobility and environmental 
(6). BSM format is designed for radio frequency economy and low latency, aimed primarily to 

localized broadcast required by V2V safety applications. Core information (group 1, below) about 
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Table 19: Types of information transmitted by BSMs 

Group 1 (transmitted at 10hz) Group 2 (transmitted 
or road events) 

as needed by applications 

Timestamp Recent braking 
Position (latitude, longitude, elevation) Path prediction and history 
Speed and heading Throttle position 
Acceleration Additional information about vehicle type 
Brake system status Automated Braking System (ABS) 
Vehicle size Stability Control 
Steering Wheel Angle GPS status and data 
Positional Accuracy Weather predictors (lights, wipers, traction, etc.) 

the vehicle is transmitted 10 times a second. Supplementary information (group 2, below) can 

be transmitted at a slower rate, as needed dependent on road events such as automated braking 

system activation or weather applications. The data packet will vary from CV to CV, but generally 

includes the following: 
Data regarding fuel usage, road grade, engine drive cycle and temperature, and operating 

mode are not planned for BSM usage. Additional environmental information can help provide 

weather warnings for other drivers or eco‐trajectory computations, but is not required. 

12.2 Functional specifications 

To understand how a BSMMS can be developed and eventually implemented, this report exam‐
ines simulations, real‐world test pilot sites, and other literature available. Lane accurate data is 
discussed first, as it is necessary for all other functions of the BSMMS. In addition, data security 

and driver privacy efforts are discussed, as gathering travel time estimates may impact them. 

12.3 Lane accurate data 

Historically, basic traffic metrics were captured by single‐ or double‐loop detectors, while lately 

newer technologies like video and radar are increasingly used to reduce cost and increase accuracy. 
By virtue of the loop detectors being buried in specific lanes, lane accuracy of gathered information 

is essentially assured. Regardless of the actual technology implemented, existing measurement 
systems are location based, fundamentally incapable of measuring lane Density or Space Mean 

Speed (SMS), the two metrics required along with Flow to describe any traffic condition. At best 
case scenario, double loops, video, and radar detection systems in addition to lane counts (Flow), 
can directly measure Spot Speed (Arithmetic mean Speed). These two measurements, combined 
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with a fair amount of assumptions and traffic flow modeling are used to estimate, with a fair 
amount of error, either SMS or Density (14). So, although lane specific, accurate measurement 
of flow and fair estimates of density are available at fixed locations. Gathering traffic information 

between locations takes an additional level of estimation and results in further loss of accuracy. 
The fundamental paradigm change of the BSMMS is that, at 100% market penetration, it can 

directly provide measurements of Density, Flow, and potentially SMS. 

BSM GPS Data Accuracy 

The most fundamental component of a Connected Vehicle is the onboard GPS. Although other 
assistive systems can exist in the vehicle, the location included in the BSM originates from the OBU 

GPS. In addition, when the vehicle is near an RSU, it will receive broadcasts with GPS accuracy 

corrections. Therefore, the aforementioned need for lane accurate information depends on the 

ability of the OBU GPS to achieve sub‐lane accuracy. 
A 2017 BSMMS study by ImageSensing Systems (37) was performed using vehicles equipped 

with OBUs traveling at a short stretch of road equipped with RSUs, while infrastructure sensors 
used to generate emulated BSMs. The goal of the project was to utilize new kinds of sensors in 

order to produce estimated BSMs for non‐instrumented vehicles, but since ground truth was a 

basic need in the research project, an evaluation of the OBU GPS accuracy was also performed. 
Figure 110 shows the contrast between externally gathered vehicle information and OBU GPS 

data. Based on the error, GPS data alone would not provide accurate lane information (or at least 
as accurate as radar is assumed to be). 

As of 2008 the civilian GPS standard for accuracy on a moving target is roughly 4 meters. This 
can be affected by weather, atmospheric conditions, or other issues affecting communication with 

the satellite system. To account for this, researchers will need to develop algorithms to correctly 

project the BSM data on to the roadways, and ensure the vehicle information is shown in the 

correct lane. In addition, high resolution maps will be required to project the data on the road 

network for use in the BSMMS. 

BSMMS Accuracy 

The idea that BSMs can replace current traffic detector systems is ambitious; it has been touted 

as capable of providing real‐time (4), accurate traffic detection in addition to all of the applications 
for safety, mobility and the environment (8). A CV pilot site in Tampa has been operational since fall 
of 2018, and researchers are posting data gathered by BSMs transmitted to infrastructure sensors 
and Road Side Units. Tampa’s dataset was chosen over the other two test sites in New York and 
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Figure. 110: Slide showing the error between traditional radar detected northing and easting, 
and OBU GPS data 

Wyoming because it was the largest and most accessible at the time of writing. Figure ?? below is 
an example of a speed map generated by the BSMs from the connected vehicle fleet that Tampa 

has deployed. Note, speeds are expressed in 0.02m/s. A value of 100 on the chart is equivalent 
to 2 m/s (7). 

This system is currently not producing real‐time maps of the CV site. But can the BSMMS 

provide location‐accurate historical data? 

As shown in Figure 112, on closer inspection of the data points, many vehicles are somewhere 

on the roadway. However, it is clear that GPS inaccuracy or other issues transmitting and receiving 

BSMs has caused many vehicles to be slightly off the road or even off it entirely. 
While lane by lane data is not a requirement for some traffic metrics or future applications, 

it is provided by the current loop detector instrumentation. To switch from that system without 
compromising the utility of information received through BSMMS, it must continue to provide 

lane by lane data.(Lane by lane requirements per application, and approach that requirement in 

a different way—ramp metering doesn’t require lane by lane, but it does require the exclusion of 
auxiliary lanes with non‐homogenous traffic patterns, so they don’t affect the general estimate 

of density—potentially excluding by filtering out outliers instead of exclusively lane by lane as is 
done now) 
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Figure. 111: Wide view of Tampa CV data, taken March 20th 2019 

Figure. 112: Close up of Tampa CV speed map 

SPECIFICATION 1 

BSMMS must provide lane by lane data. 

• BSMMS need to be able to take the information provided by the BSMs and determine which 

roadway and which lane of that roadway each vehicle is traveling. 

– As explained, currently the GPS alone is not able to reliably provide location accu‐
rate enough to assign the vehicle to a lane. Therefore additional post‐processing algo‐
rithms are necessary to refine the raw information provided by the BSMs. For exam‐
ple, if one has accurate, up to date high resolution maps, containing the actual lane 

boundaries, with accurate lane widths, especially on sections of road where there are 

transitions, it is conceivable that an algorithm can be developed which based on rel‐
ative lateral differences between vehicles driving on different lanes as well as their 
heading and speed, relative lanes can be assigned to each vehicle (rightmost, second 
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Figure. 113: Map generated with two-month BSM geocode data from Ann Arbor, MI 

from the right, etc.) and be compared with the actual geometry of the road as de‐
scribed in the digital maps. The result will be a better estimation regarding the lane 

each vehicle is. 

12.3.1 Speed 

Currently, loop detectors and radar are used to gather vehicle speed information. Excluding some 

isolated cases like the I‐94 CV Testbed utilized in this project, current sensors provide only spot‐
speed measurements. Making the assumption that this Time‐Mean‐Speed (TMS) is reasonably 

close to Space‐Mean‐Speed (SMS), one can use it to estimate the density of a given roadway seg‐
ment. Traditionally, speeds are gathered every half a mile on freeway systems. 

BSMMS have the ability to gather space‐mean‐speed in addition to spot speeds, as vehicle 

speed is transmitted along the entire length of the detector range rather than just a point. Pre‐
sumably, speed information will be spot captured along the length of the detector, but algorithms 
could be developed that would knit together the BSMs to create space‐mean‐speed. Capturing 

these speeds would be one method of deriving travel time and end of queue locations. 
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SPECIFICATION 2 

BSMMS must gather speed information as it is transmitted from vehicles. 

• Space‐mean‐speed can be calculated with an algorithm connecting the 10 Hz frequency 

transmissions along the area of radio coverage of one or more RSUs. 

12.3.2 Vehicle Counts 

Historically, one‐off counting efforts have been employed in traffic metrics to gather vehicle count. 
BSMs offer the possibility of having access to a vehicle count at any point in the stored BSMMS 

data. So far, no studies have been done solely on the accuracy of real‐world BSMs vehicle counts 
compared to traditional infrastructure capture. Although, accurate counts and, to the extent cur‐
rently possible, calculation of traffic flow is the most accurate traffic measurement currently avail‐
able through traditional location based sensors, the same functionality depends greatly on the 

CAV market penetration. Basically, although a relatively small number of sampled vehicles can 

produce a fairly accurate estimation of speed, if there is not a complete market penetration for 
CAVs– or worse, the fraction of CAVs on a particular roadway segment fluctuates– it is impossible 

to reach a satisfactory estimate of volume. 

12.3.3 Roadway Density 

As discussed in the last two sections, SMS is a traffic metric that can be estimated with relative 

accuracy even if the level of market penetration for CAV is low. Density estimates have the exact 
same issues as volumes. Basically, both metrics involve a direct vehicle count; volume is a count 
in time while density is a count in space. Excluding the extreme future case of guaranteed 100% 

market penetration, obtaining estimates of volume and density will involve either a large number 
of assumptions regarding the shape of the fundamental diagram on each section where accurate 

SMS is available, or location based sensors are needed to supplement the BSM data. Specifically, 
if from the BSMMS a reliable estimate of SMS is secured, a vehicle count on that location obtained 

through traditional detectors will provide a very accurate estimate of density simply through the 

application of the Fundamental Equation of Traffic. 

Density = Flow/SMS 

Further work in ground‐truth will need to be done to ensure vehicle counts and density mea‐
surements are accurate. As market penetration of CAVs increases and traffic metric capture changes 
over to using BSMs for data, algorithms to infer true vehicle counts will need to be developed. 
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A quality of DSRC that is both a boon and a hindrance is its range. The range is estimated at 
300m/1000ft with 360‐degree capture ability; however, this is affected by line of site. In the NYC 

test pilot program, RSUs were needed as close as 76m away from each other to ensure the dense 

infrastructure would not cause gaps in data collection (2). With increased DSRC placement comes 
increased cost. Cities must determine the resolution of data required for applications, and use 

that to prioritize placement of the devices. They should be placed so there are no holes or gaps 
in the data flow. 

SPECIFICATION 3 

BSMMS must provide accurate vehicle counts. 

• This is not currently feasible and additional post‐processing based on traffic flow models is 
necessary. 

– This project proposed a real‐time fundamental diagram calibration method and through 

that it inferred vehicle counts based only on BSM data. The accuracy produced at low 

levels of market penetration may not be enough for traffic operations needs like ramp 

metering. 

– It is possible that different methods that fuse information from the BSMs with strategi‐
cally located infrastructure sensors that provide only counts can improve the estimates 
of volume and in extend density. This project did not explore this possibility. 

12.3.4 Travel Time And Origin Destination Information 

BSMs could also be used to estimate travel time based on space mean speed at a snapshot in time, 
which would not require the use of individual vehicle IDs. However, in order to gather real‐time 

travel time information, BSMs will potentially need to identify individual vehicle IDs along their 
path. A secure system will need to be in place to ensure only agencies and individuals with proper 
credentials are reading the BSMs. In addition, there is a need for vehicles to be credentialed to 

emit BSMs, to prevent rogue information from entering the system. Driver privacy is a concern 

when accessing the BSM information. 

System Security 

The USDOT set aside the 5.9GHz broadcasting spectrum specifically to support CVs in 1999. In 

addition to a dedicated spectrum, security measures are implemented within OBUs and RSUs en‐
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suring that only actors with proper credentials can exchange data. IEEE 1609.2 lays out standards 
for DSRC security of transmission of BSMs. 

Agencies operating DSRC based RSUs must have a license for operating this equipment in their 
geographic location, and must register each RSU deployed, both processes handled by the FCC. 
OBUs do not have to be registered with the FCC as they are automatically enrolled in the CAV 

system (3). 
The Security Credential Management System (SCMS) employed in a DSRC based CAV ecosys‐

tem uses a Public Key Infrastructure (PKI) to ensure messages from vehicles and infrastructure can 

be trusted. New certificates can be obtained on a regular basis to maintain up‐to‐date information 

about any untrustworthy entities in the system. This system still being developed; car companies 
are shifting away from federal government oversight towards private Certificate Authorities (CA), 
like Green Hills (5), OmniAir, 7Layers and Danlaw (1). The connection to this system for vehicles 
can be implemented in one of two ways: a DSRC‐only approach, which uses DSRC RSUs to dis‐
tribute keys and certificates obtained from the CA via a backhaul communication line; or a hybrid 

approach, which uses a combination of cellular, Wi‐Fi, and satellite communication to distribute 

keys and certificates to vehicles. A notable variant of the hybrid approach, in use by the Wyoming 

DOT CV Pilot, uses SiriusXM satellite communication to push new certificates to the vehicles, with 

DSRC RSUs only in spot problem locations (4). 
As a requirement for the SCMS that DSRC‐based CAV implementations relies on, roadside 

equipment must be connected to the Internet to facilitate communication between the device 

and the Certificate Authority (CA) that issues signing certificates. This is required in order to sign 

messages transmitted by the RSU so that they can be trusted by vehicles. This connection may 

also be used to allow the RSU to occasionally distribute new keys and certificates to vehicle. While 

the SCMS requires some amount of communication to ensure certificates are up to date, the pe‐
riods over which these certificates change are not short enough to require a low‐latency, high‐
bandwidth connection, meaning that communication technologies such as DSL or cellular should 

meet the requirements. 

SPECIFICATION 4 

BSMMS must comply with security protocol laid out in IEEE 1609.2. 

Driver Privacy 

In addition to system security, there is a strong concern for driver privacy to be protected. 
Vehicle IDs assigned to BSMs are temporary, and change intermittently along the vehicle’s route; 
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they contain no Personally Identifying Information and is theoretically impossible to trace back to 

a single vehicle. An exception may be when outside data could identify an individual vehicle, such 

as information from a crash report that could be related to vehicle BSM trajectories at the time 

and location of the crash. 
As a response to consumer concerns, the USDOT has stated that V2V systems “will not permit 

tracking through space or time of specific owners, drivers, or passengers” (3). They also state 

that BSMs “cannot be used by law enforcement or private entities to identify a speeding or erratic 
driver” (3). Information transmitted over the CAV network is confidential, and does not involve 

recording or exchanging any personally identifying information or vehicle movements (3). These 

privacy measures are supported by the security of the DSRC‐based transmission system. 
Both travel time and origin‐destination (O‐D) metrics run into the issue of driver privacy. Travel 

time requires the identification of a vehicle between two or more consecutive time periods, while 

O‐D information requires identifying an individual vehicle at different locations in the road net‐
work. Basically, in either case the metrics come from directly examining a specific vehicle’s path. 

Travel Time 

Presently, travel time information is estimated from loop detectors, radar, and probe‐based 

data sources through a large number of assumptions that affect accuracy. While information from 

BSMs can be used to estimate travel time without direct vehicle trajectories, BSMs have the poten‐
tial for much more accurate travel time, at least along traffic links and time periods where vehicle 

ID keys stay the same. As long as the vehicle ID in the BSM remains fixed the method is identical 
to current probe‐based approaches with vastly higher number of probes available to draw infor‐
mation from. By sampling small pieces of anonymized BSM and using an algorithm to stitch them 

together, a general estimate of travel time along the link could be created. This would protect 
driver privacy, as each individual vehicle within a group of vehicles is used for part of the esti‐
mate; no one travel path would be exposed. This probe based approach may have more latency 

than using the space mean speed to estimate travel time, since the probe’s travel time along a link 

is not known until it gets to the end of the link. 
The limitation of this method depends on the frequency at which vehicle IDs change; as of right 

now, SAE J2945/1, (parameter vCertChangeInterval) says the certificates have to change every 5 

minutes. This frequency is based on each individual vehicle so it is random when the threshold 

will be reached for each vehicle. Regardless, barring very congested flow conditions, 5 minutes 
is a fairly long time period that can cover miles of freeway sections. Driver privacy on a low‐
density traffic link may come into play; if a driver is the only vehicle ID on a certain traffic link, 
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their movements are obvious. 

Origin-Destination Information 

Currently, single‐vehicle origin‐destination information is gathered through the use of license 

plate readers. They are generally deployed in isolated cases from a project specific point of view, 
as the cost of each reader is high and employing them without a specific purpose in mind would 

be prohibitively expensive. For research purposes, being able to access origin‐destination infor‐
mation through monitoring BSMs would be much more efficacious. With vehicle IDs changing 

at unpredictable moments along traffic links, tracking specific vehicles for origin‐destination in‐
formation is currently not an option for BSMMS. For the purposes of this document, no known 

solution for using BSMs to gather O‐D volume exists. 
In Tampa and the other pilot CV test sites, researchers have been granted access to the BSMs 

gathered by RSUs. This information is sanitized before being released to the public, and no Per‐
sonal Identifying Information (PII) is included. In addition, only the National Highway Traffic Safety 

Administration and motor vehicle manufacturers are able to access data directly in and identifying 

a particular OBU to help track potentially defective equipment. This also does not provide any PII, 
merely information regarding the units operation. 

Many applications of CAVs do not require high‐resolution data over a long stretch of roadway. 
For example, intersection‐based applications such as red light violations only require accurate, sus‐
tained BSM vehicle ID keys in a radius around the intersection. For research purposes, depending 

on the traffic link that is desired to be studied, it is possible that vehicle IDs would remain constant 
over a sufficient length of time. This would allow individual IDs to be tracked along that period for 
origin‐destination information. While the privacy of drivers must be taken into account, to fulfil 
real‐time data capture individual vehicle BSMs will potentially need to be stitched together over 
larger distances. Researchers will need to develop algorithms or programs to account for changes 
in vehicle IDs if a project requires study of trajectory over a longer traffic link than trajectory is 
provided for in the dataset. 

Rumley (32) has written a preliminary algorithm for identifying specific vehicle paths through 

BSM. While his algorithm produced better results than just guessing, it was still difficult to trace 

vehicle paths with accuracy. The USDOT acknowledges that while driver privacy through BSMs 
will be protected as much as possible, aftermarket GPS trackers still exist and would be a much 

cheaper way for someone with nefarious intent to gain vehicle path information, anyway. 
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SPECIFICATION 5 

The BSMMS must provide for the collection of travel times. 

• At the minimum, this will require algorithms that would track individual vehicle IDs, and 

record the following event times. 

– Vehicle crosses upstream boundary of predefined travel time section 

– Vehicle crosses downstream boundary of predefined TT section. 

– Vehicle ID appears inside a TT section without crossing the upstream boundary. 

– Vehicle ID disappears without crossing the downstream boundary. 

Tracking these events will allow for heuristic algorithms to handle the sampling of individual 
vehicle travel times. 

Note: without lane level accuracy, collection of travel times can be very unpredictable. 

SPECIFICATION 6 

The BSMMS must provide Origin‐ Destination information 

• BSMMS will require the development of specialized algorithms that allow the system to 

resemble the operation of a probe‐based travel time and origin‐destination data collection 

system without violating the privacy regulations required by IEEE 1609.2. 

• Such algorithms must account for density on the roadway; lower density will result in an 

easier stitching of random vehicle paths; higher becomes more complicated 

• These algorithms must account for randomly changing vehicle ID keys. 

12.3.5 Collecting, Storing and Processing BSM Data 

With the amount of data collected by BSMMS at any point, especially as market penetration in‐
creases, methods for storing, processing, and transferring data must be considered. 

By examining an example peak hour on University Avenue in Minneapolis, MN, a sense of scale 

in regard to the volume of data produced by CAVs can be gained. According to the Minneapolis 
Traffic Counts and Crashes, on Wednesday, October 4, 2017 (representative of an average day), 
at University Avenue between 15th and 16th Ave SE (a high commuter block), during the AM 

157 



peak hour (7:45AM to 8:45 AM), 1,043 vehicles were counted. 100% market penetration rate is 
assumed for this calculation. 

If a DSRC‐based RSU radio has a 2000‐foot diameter range (with a clear line of sight) and each 

vehicle is traveling at 30mph (no congestion), it would take a vehicle 44.4 seconds to pass by the 

radio. During the 44.4 seconds each vehicle broadcasts its BSM at 10 Hz, so 444 BSM packets 
are received from each vehicle. With each BSM packet being roughly 320 bytes, that means each 

vehicle is generating 142 kilobytes of information while in range of this particular RSU. Multiplying 

by the peak volume gives 148.2 megabytes of data generated at this specific 2,000ft of University 

Ave in just one hour. 
While this may not sound like a lot of data, consider that it represents one DSRC receiver in the 

entire metro area. If we divide by 0.37 miles per DSRC device diameter, we get 400.5 MB per hour 
per mile during peak volume in the metro area. For an estimate of miles that would potentially 

have DSRC connections, the MnDOT snowplow records were checked (18). (Presumably, MnDOT 

plows all important thoroughfares.) As of 2019, 1040 miles of streets in the Minneapolis area 

are plowed during each snowfall. So, taking the 400.5MB per hour per mile and multiplying it by 

1040 miles and 24 hours gives 9996.5 GBs per day generated in the metro area while assuming 

peak traffic. This is just one example case, as not all roads have volumes comparable to University 

Ave (much higher on freeways, or lower on less travelled arterials), and they are not all at peak 

capacity every hour. 
If we instead assume an average of 400 vehicles per hour to account for peaks, lows, and 

streets with higher or lower volume than University Ave, and perform the same calculation, roughly 

56.8 KB per hour per vehicle would be generated, resulting in 1,417 GB of data per day in the Min‐
neapolis area. 

Traditional loop detectors gather data at 60HZ but perform an on‐the‐spot aggregation into 

30 second intervals, reducing the data load that is finally retained. BSMMS will need to have the 

same capacity for aggregation, requiring a computer in addition to the DSRC device. 

SPECIFICATION 7 

BSMMS must have the capacity to transmit, receive, store and aggregate the amount of data 

a connected roadway will produce. 

12.4 Conclusion 
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12.4.1 General system specifications 

• BSMMS must provide lane‐by‐lane data. 
a. BSMMS need to be able to take the information provided by the BSMs and determine 

which roadway and which lane of that roadway each vehicle is traveling. 

• BSMMS must gather speed information as it is transmitted from vehicles. 
a. Spot‐speed can be gathered from BSMs. 
b. Space‐mean‐speed can be calculated with an algorithm connecting the 10hz frequency 

transmissions along the length of the detector. 

• BSMMS must provide accurate vehicle counts. 
a. At less than 100% market penetration, algorithms to infer vehicle counts based on existing 

BSM data must be developed. 
b. At 100% market penetration, this will be assumed. 

• BSMMS must follow security protocol laid out in IEEE 1609.2. 

• The BSMMS must provide for the collection of travel times. 
a. At the minimum, this will require algorithms that would track individual vehicle ID and 

record the times they cross predefined section boundaries or appear/disappear mid‐section. 
b. Without lane level accuracy, collection of travel times can be unpredictable. 

• The BSMMS must provide Origin‐ Destination information 

a. BSMMS must have algorithms in place to utilize a probe‐based estimate of travel time 

and origin‐destination information. 
b. These algorithms must account for density on the roadway. Lower density will result in 

an easier BSM path to stitch together; higher becomes more complicated. 
c. These algorithms must account for changing vehicle ID keys along a link. 

• BSMMS must have the capacity to transmit, receive, store and aggregate the amount of 
data a connected roadway will produce. 

Freeway Systems 

Currently, the freeway system gathers traffic metrics every half mile. BSMMS have the po‐
tential to gather data much more frequently than that, based on 10HZz broadcast over the entire 

length of the DSRC range rather than just a point. In addition to the general system specifications, 
freeway BSMMS will be able to: 
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• Detect queues by: 

– Boundary density estimates 

– Vehicles slowing and stopping 

• Provide data for: 

– Ramp metering 

– Travel information systems 

– Pricing 

– Incident detection 

Arterial only 

Traffic metrics on arterials are at present very expensive, and as a result, very spotty. Data on 

arterials tend to come only from actuated intersections and consists of counts and queue sizes. 
Having DSRC deployed throughout the city will vastly improve arterial measurements by: 

• Detecting queues by: 

– Boundary density estimates 

– Vehicles slowing and stopping 

– Signalized intersection queue warning 

• Providing: 

– Turning movement counts 

– Discharge and saturation flow rates 

– Limited (unknown) origin‐destination information based on vehicle key change timing 
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13 Conclusion 

In this project, the project team develops a traffic state estimation algorithm based on the Kalman 

filter technique and the cell transmission model. 
Databases with BSMs are prepared using radar data and a microscopic simulation model in 

traffic simulation package AIMSUN to test the algorithm accuracy. The radar data is collected 

from a section on I‐94. BSMs from AIMSUN focus on two freeway sections. The results show that 
the accuracy of the Kalman filter is good when applying to the BSMs generated by microscopic 
simulation models. Under the uncongested scenario, errors for the density, the speed, and the 

flow estimations are about 23%, 3%, and 23%, respectively. Under the congested scenario, errors 
for the density, the speed, and the flow estimations are about 15%, 3%, and 12%, respectively. 
An increase in the penetration rate increases the estimation accuracy of the Kalman filter. The 

accuracy of the Kalman filter is much lower when applied to BSMs from radar data as there are 

noises in the BSMs. The density and the flow estimations have an error of about 51%. Because 

the values for actual densities and flows are small, so the estimation error for these two variables 
is large. For speed estimation, the error is as small as 8%. 

To test whether the input flow measurement at the entry of road sections can improve the 

accuracy, the project team adds the input flow measurement into the test database. For BSMs 
generated in AIMSUN, accuracies for density, speed, and flow are improved by adding input flow 

measurements. However, the accuracy drops for BSMs generated from radar data. One possi‐
ble reason is that BSM data generated from radar data may have some errors which make the 

extracted values for input flow incorrect. 
The project teams also created a traffic monitoring system to apply the traffic state estimation 

algorithm to a large network. The system is composed of data collection, data transmission, and 

data processing modules. In the data collection module, the system collects BSMs and uploads 
them to a server. BSMs collected by different road‐side units are stored in different tables. In the 

data processing modules, local computers use BSM data on the server and estimate traffic states 
in real‐time. Scenarios under different penetration rates are used to test the efficiency of the sys‐
tem. With a larger penetration rate, more BSMs need to be processed, which requires a stronger 
computation power. The required number of computers that guarantees real‐time computation 

depends on the network size and the database size. 
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