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INTRODUCTION

1 Introduction.

Transit is an important component of the nation's total

transportation system serving federal as well as state and

local objectives. Public transit is often the only means of

transportation to life-sustaining goods, services, and

opportunities for many people, especially those who are

elderly or mentally and physically handicapped.

The coordination of public transportation services is a

concern of transit professionals at both the national and

state levels. The continuing needs of public transit users,

coupled with a decline in federal funds for transit, requires

transit professionals to explore new ways of service delivery.

Coordinating the use of existing transit services has the

potential of improving service from both a cost and service

efficiency perspective. Government agencies are increasingly

mandating analysis of performance as a condition of financial

aid.

Research of transit performance has been impeded by the

absence of an acceptable classification that clusters similar

systems together. Classification is a process which is basic

to all sciences and which provides the earliest form of
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INTRODUCTION

measurement in a given discipline. More importantly,

classification generates the concepts upon which a science can

begin to build an understanding of the phenomena within its

domain.

Government and private agencies are normally based on size to

decide for funding a system but there have been no definitive

studies that have specified and tested relationship between

size and other operational variables, or with performance.

Using peer groups for performance analysis addresses the

controversial issue of whether transit systems should be

compared. Transit managers tend to reject comparisons, yet

most of them use comparative data for internal management

assessments. Peer groups are typically selected based upon

operating and service area characteristics.

Performance measures based on available operating, financial,

and ridership statistics have recently been considered as

criteria for the evaluation of public transit systems. Such

measures can provide much insight into the operation of a

particular system. In addition, these measures can be used to

examine the differences among various transit systems and the

changes that may occur from year to year. However, the

injudicious application of generic performance indicators in

the direct comparison of systems can provide misleading
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INTRODUCTION

information about the relative effectiveness of the system's

operation and service. To compare systems adequately, it is

necessary to adopt an approach that can allow for the unique

local environments over which the operator has limited

influence.

The generic term cluster analysis describes a large family of

statistical classification procedures. Since the early 1960s,

when high-speed computers made the use of this procedure

relatively easy, more than 100 different clustering algorithms

have been developed. Milligan (1981) conducted a computerized

search of the literature in 1976 and showed that new or

considerably revised algorithms were appearing at a rate of

about one per month. Only few authors (e.g. D' Andrade 1978,

von Eye and Wising 1978, 1980) however, have tried to compare

their new procedures with already existing clustering

algorithms.

Over the last years, there has been a growing interest in

quasi-statistical techniques for forming classifications.

These techniques are known under the generic name "cluster

analysis". There are a large number of different cluster

analysis methods, most of which fall into two families:

hierarchical agglomerative methods and iterative partitioning

methods. Hierarchical agglomerative methods start the
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INTRODUCTION

clustering process by forming a matrix which represents the

pairwise similarities of all entities being clustered. These

methods they proceed to build clusters gradually (i.e. to

agglomerate) by putting the most similar entities together.

This agglomerative process can be represented by hierarchical

trees or dendrograms. The second major family of clustering

methods are the iterative partitioning methods. The methods

begin with a predetermined classification (i.e. partition) and

through various iterative processes try to find a revised

classification which will optimize a measure of homogeneity of

the cluster.

In view of the diversity of available algorithms, the

potential consumer of cluster analysis faces several problems.

First because of that development of different terminologies

in different fields of application, several labels are often

used for the same clustering algorithm (Blashfield and

Aldenderfer, 1978). More important few guidelines are

available for choosing a clustering procedure for research

applications. This problem is especially perplexing since

different algorithms are likely to produce different solutions

when applied to the same data set (Bartko, Straus and

Carpenter, 1971). Furthermore, there is no guarantee that any

of the available clustering algorithms will recover the true

cluster structure either under error-free or error-perturbated
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situations (Milligan 1980).

The objective of this work is to develop classification

methods that give satisfactory results for transit research.

A clustering method is introduced that does not have the

disadvantage of the iterative partitioning methods, to

predefine a classification. Usually this is a difficult task,

and the user in many cases is unable to come up with a correct

initial classification. This work is part of a larger project

that seeks to provide improved methods for design of transit

systems based on needs and the characteristics of the service

area. Results of this research can be used as a descriptive

framework for comparative studies. The orientation has been

to provide a technique that would be useful for internal

decision making within each transit agency.

1 -6
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LITERATURE REVIEW

2 Literature Review.

2.1 Previous Applications of Classification in

Transportation.

Separating transit systems into peer groups that share similar

operating characteristics is analogous to separating any set

of objects into a number of groups in which members of the

same group are more similar to each other than to objects in

other groups, and the groups differ from one another.

Problems of this sort are common in the social and biological

sciences and in applied settings like market research. Tardif

et al. (1977) clustered neighborhoods together to designate

transit market areas for Sacramento, California. Other

transportation researchers have used clustering techniques to

facilitate research. Bottiny and Coley (1967) grouped

urbanized areas for transportation analysis, and Golob et al.

(1972) used similar procedures to group metropolitan areas for

their analysis of arterial transportation requirements.

The principal use of the classification of transit systems is

to assist comparison of performance between similar systems.

In some studies group of data with different characteristics

were used to define parameters of some equations. For example

2 - 2



LITERATURE REVIEW

Nelson (1972) and Veatch (1973) estimated supply and demand

equations that are widely used. Nelson estimated his

parameters using transit systems in urban ares, 51 systems in

1968 and 44 in 1960, although these systems were quite

different in other operating characteristics. Veatch

restricted his analysis to 29 systems operating in small and

medium sized cities, in an attempt to control for differences

in the operating environment. These studies should- be

replicated with systems drawn from one or more peer groups,

after applying a classification technique, as it may

significantly improve estimation results.

Another research area that could be improved by using the

results of peer group analysis are current studies of the

effect of subsidies on transit performance. Purcher et al.

(1983) used a national sample of 77 systems in 1979 and 135

systems in 1980 for which reliable data were available.

However this study included systems with quite different

operating characteristics. Such studies would result in a

wider acceptance, of their results if systems that are

relatively homogeneous in operating characteristics, were

used.

A national study have used size as the differentiating

characteristic for comparative studies. The National Urban
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Mass Transportation Statistics for fiscal years 1979 and 1980

grouped systems by the total number of revenue vehicles (U.S.

Department of Transportation, 1981, p.vi). Research by

Anderson and Fielding (1982) used three performance indicators

to cluster transit systems. This method was replicated in a

research, but was rejected when it was found that the clusters

based upon size, peak-to-base operating ratio, total revenue

vehicle miles and speed yielded superior results. The peer

groups based on performance were neither as distinct from each

other as those based on operating characteristics, nor did

they capture as much of the variability of all seven

performance indicators.

Later study from Fielding (1985), University of California

proposed these four factors to reflect service area

characteristics that constrain the decisions made by the

transit managers. The hierarchical clustering technique was

used to partition fixed route motor bus transit systems from

different states of the United States. In this study Fielding

was trying to classify the systems so that the separate

clusters should capture the important difference between types

of transit systems. Also the number of systems in each group

should be sufficient for comparative analysis within the group

but not so numerous that the task of comparison is excessive.

The clusters should be formed at approximately the same level
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in the cluster hierarchy so that they reflect about the same

degree of similarity within each cluster. The clustering

analysis resulted in twelve peer groups. Generally, there is

more variability in the number of peak vehicles and vehicle

miles and less variability in the speed and peak-to-base

ratio. Some of the groups could have been divided into

smaller cluster to reduce the variability, but this would have

resulted in an undesirable large number of peak groups. The

validity of these groups was examined by comparing the groups

based not only on the four factors, but also on performance

indicators. Statistically significant differences were found

between the groups in terms of both the operating and the

performance characteristics.

In another study at Purdue University (Sinha, 1985) a cluster

analysis-was done on Indiana transit systems. As with the

previous study, factors beyond the control of the managers

were chosen. The list of indicators came from a literature

search and suggestions from the managers. A statistical

correlation analysis was implemented for clustering the

systems. First, a subset was admitted to a cluster if its

correlation with a member of that cluster was greater than

0.81. Then, each subject was compared to the remaining

members. Only subsets with an average correlation greater

than 0.64 were retained in the group. The analysis performed
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on data from 1981, 1982, and 1983 with consistent results.

Four groups were found large, medium, small and all demand

responsive systems. It was determined that most clusters

differed in the factors at a significant level, the exception

to this was the factor speed.

The last two clustering applications are more similar with

this study. The University of California study examines

systems throughout the United States and investigates only

urban fixed-route systems. A large number of systems is

included resulting in 12 pear groups. The research at Purdue

University is probably more similar to this project. All

transit systems in Indiana were analyzed, and 4 groups were

found. The methods used in both analyses are valid, but this

is not known whether the algorithms are the best for their

objective. In this study the Karhunen-Loeve extraction was

used to reduce the dimensionality of the data. This was not

done in the California and Indiana studies. Instead a smaller

group of variables was initially selected but having as result

the lost of information.

2.2 Literature on Classification Methods.

One correlate of the explosion of interest in cluster analysis
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is the proliferation of various methods and software programs

for performing cluster analysis. Each year there are a number

of articles which advocate a new method of cluster analysis.

The accumulation of these articles has been led to a large

collection of diverse methods, all of which are subsumed under

the generic title of cluster analysis.

There are two major types of cluster analysis methods:

hierarchical agglomerative and iterative partitioning. These

two classes of cluster analysis methods represent approaches

which are hard to compare directly.

The simple cluster seeking algorithm (Tou, 1974) is a quick

and simple algorithm. It can give useful results if the data

is composed of distinctly separated clusters. This,

unfortunately, is usually not the case. If the user has an

idea of how many groups there are and where their centers are,

the k-means algorithm (Tou, 1974) would be desirable. If

there are only two variables, it is easy to view the points

and pick out possible clusters. However, as the dimensions

increase, this gets more difficult. The maximum distance

(Tou, 1974) and decision directed (Young, 1974) algorithms do

not require the user to predetermine the number of clusters,

but instead require an idea of the distance between clusters.

These algorithms are most useful when the desired distance
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between clusters is known, and there is no restriction on the

number to be found. Hierarchical clustering gives the user

the option to decide how many clusters and how far apart they

are after the analysis. Different cutoff levels can be tested

for some optimum after analysis. The ISODATA algorithm (Tou,

1974) is more complex. However, the interactive nature of

this algorithm makes it attractive. After each iteration the

user can observe the data and make desired changes in a number

of parameters if necessary. An algorithm given by Watanabe

(1985) has the objective of minimizing the entropy of a data

set. The algorithm is called dynamic coalescence model and

can be thought of as a dynamic hierarchical clustering

algorithm.

Each class of classification methods contains a large number

of algorithms which have somewhat different properties. There

are different hierarchical agglomerative methods. Sneath and

Sokal (1973) discuss single linkage, complete linkage and four

types of average linkage. In addition there are at least

three different methods which attempt to minimize the variance

within clusters (Anderberg, 1973; Ward, 1963) two methods

concerned with optimizing information statistics for cluster

structures (Clifford and Stephenson, 1975), two methods by

McQuitty (1967) which are variations on the complete and

average linkage methods as well as another variation on

2 - 8
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complete linkage by Carlson (1972), and finally Lance and

Williams (1967a, 1967b) have advocated a generic hierarchical

agglomerative method which is based upon their theoretical

overview of these methods (flexible theta method).

In addition to the hierarchical agglomerative methods,

Hierarchical divisive methods have also been proposed in the

biological sciences (Edwards and Cavalli-Sforza, 1965) and

have been used in ecology (Clifford and Stephenson, 1975) and

anthropology (Peebles, 1972; Whallon, 1972). Iterative

partitioning methods are generally the focus in the pattern

recognition literature and in statistics (Bezdek, 1974a,

1974b; Ball, 1965; Friedman and Rubin, 1967). Factor analysis

has been a popular topic in multivariate statistics in

psychology, hence psychologists have proposed a number of

clustering methods whose topic is related to that of factor

analysis (Tryon, 1939; Tryon and Bailey, 1970; Lorr and

Badhakrishnan, 1967). Clumping (Peay, 1975), mode searching

(Jones, 1968; Wishart, 1969) and graphic theoretic methods

have also been proposed but have not stimulate a large

literature.

Given the large number of cluster analysis methods and the

diverse approaches to forming classifications which these

methods represent, a natural question concerns which methods

2-9
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are most frequently used. By looking the literature, nearly

three of every four use one of the hierarchical agglomerative

methods. There are three possible reasons why hierarchical

agglomerative methods are being used so extensively:

* These methods are among the oldest of those

available, and it is these methods which were

popularized by the book of Sokal and Sneath (1963).

*Researchers tend to use whatever methods have

been previously used in their literature; hence

methods with a long history are likely to become

dominant.

* Hierarchical agglomerative methods are the only

methods which have been the object of empirical

analysis.

Since the characteristics of the other methods are less well

understood, researchers tend to stick to the hierarchical

agglomerative methods.

Very little work has been done on the empirical evaluation of

the properties of different clustering methods. The few

studies which have been published have reached contradictory

conclusions. Some studies have favored single linkage

hierarchical agglomerative clustering (Fisher and van Ness,

1971; Jardine and Sibson, 1971; Sibson, 1971) while others
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have favored complete linkage (Baker and Hubert, 1975; Bartko,

Strauss and Carpenter, 1971). Still others have argued in

favor of average linkage (Cunningham and" Ogilive, 1972;

Sneath, 1966; Sokal and Rohlf, 1962). And Ward's approach to

minimum variance hierarchical agglomerative clustering also

has its adherents (Blashfield, 1976a, 1976b)

Much of the confusion about the comparison of the properties

of different methods of cluster analysis stems from the use of

different theoretical and methological orientations for

judging what forms an acceptable classification. For example,

studies which favor average linkage all compare the dendrogram

generated by his method to the structure of the similarity

matrix which was used to start the clustering process. Those

studies which favor single linkage, however, compared methods

in terms of theoretical criteria which all clustering method

should satisfy. Not surprisingly, the studies within each of

the conceptual approaches agree on the clustering technique

which they favor. Nevertheless, it is striking that even the

studies which have attempted to consolidate our understanding

of cluster analysis there is so much fragmentation and

diversity.
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2.3 Classification Methods.

It is evident that the ability to determine characteristics

prototypes or cluster centers in a given set of data plays a

central role in the design of pattern classifiers based on the

minimum-distance concepts. The methods discussed constitute

a cross section of representative approaches to the cluster-

seeking problem. Cluster seeking algorithms are experiment-

oriented techniques in the sense that the performance of a

given algorithm is not only dependent on the type of data

being analyzed, but is also strongly influenced by the chosen

measure of pattern similarity and the method used for

identifying clusters in the data.

2.3.1 Measures of Similarity.

To define a data cluster, it is necessary to first define a

measure of similarity which will establish a rule for

assigning patterns to the domain of a particular cluster

center. The Euclidean distance between two patterns x and z

is defined as:

D-Lx- zI (2.3.1)
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as a measure of their similarity - the smaller the distance,

the greater the similarity. Another meaningful distance

measure is the Mahalanobis distance from x to m:

D- (x-m) 'C-1 (x-m) (2.3.2)

which is a useful measure of similarity when statistical

properties are being explicitly considered. In the previous

equation C is the covariance matrix of a pattern population,

m is the mean vector, and x represents a variable pattern.

The measures of similarity need not be restricted to distance

measures. For example, the nonmetric similarity function:

S(x, z)-so (2.3.3)

which is the cosine of the angle between the vectors x and z,

is maximum when x and z are oriented in the same direction

with respect to the origin. This measure of similarity is

useful when cluster regions tend to develop along principal

axes. On Fig. 2.3.1 the pattern z, is more similar to x than

pattern z2 since s(x,z,) is greater than s(x,z2).

However, the use of this similarity measure is governed by

certain qualifications, such as sufficient separation of

cluster regions with respect to each other as well as with

respect to the coordinate system origin.
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Variable Ui

V

Figure 2.3.1 Illustration of a similarity measure.

2.3.2 Clustering Criteria.

After a measure of pattern similarity has been adopted, we

have to specify a procedure for partitioning the given data

into cluster domains. The clustering criterion used may

represent a heuristic scheme, or it may be based on the

minimization (or maximization) of a certain performance index.

The Euclidean distance measure readily lends itself to this

approach because of its familiar interpretation as a measure

of proximity. However, since the proximity of two patterns is

a relative measure of similarity, it is usually necessary to

establish a threshold in order to define degrees of acceptable

similarity in the cluster-seeking process.

2 - 14
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The performance-index approach is guided by the development of

a procedure which will minimize or maximize the chosen

performance index. One of the most often used indices is the

sum of the squared errors index, given by:

Nc

J- lx-m 1P2 (2.3.4)
j-1 xeSj

where NC is the number of cluster domains, S, is the set of

samples belonging to the jth domain, and

mi--" x (2.3.5)
N xeSj

is the sample mean vector of set S,. N, represents the number

of samples in S,. The index of Eq.(2.3.4) represents the

overall sum of the squared errors between the samples of a

cluster domain and their corresponding mean. There are

numerous performance indices in addition to the previous one.

Other common indices are the average squared distances between

samples in a cluster domain, the average squared distances

between samples in different cluster domains, indices based on

the scatter matrix concept, and minimum- and maximum-variance

indices.

2.3.3 A Simple Cluster-Seeking Algorithm.

Suppose that we have a set of N sample patterns {x1 , x,,...,

x,}. Let first cluster center z1 be equal to any of the sample

2 - 15
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patterns, and select an arbitrary nonnegative threshold T.

Let choose z = x,. Next, we compute the distance D2, from x2

to z,. If this distance exceeds T, a new cluster center, z2

= x2, is started. Otherwise, we assign x, to the domain of

cluster center z1. Suppose that D21 > T so that z2 is

established. In the next step, the distances D3, and D32 from

x3 to z, and z2 are computed. If both D31 and D32 are greater

than T, a new cluster center, z = x3, is created. Otherwise,

we assign x3 to the domain of the cluster center to which it

is closest. In a similar fashion, the distance from each new

pattern to every established cluster center is computed and

thresholded, and a new cluster center is created if all of

these distances exceed T. Otherwise, the pattern is assigned

to the domain of the cluster center to which it is closest.

The results of the foregoing procedure depend on the first

cluster center chosen, the order in which the patterns are

considered, the value of T, and the geometrical properties of

the data. The effects are illustrated in Fig. 2.3.2, where

three different cluster center arrangements have been obtained

for the same data simply by varying T and the starting point.

2.3.4 Maximin-Distance Algorithm.

The maximin (maximum-minimum) -distance algorithm is another

simple heuristic procedure based on the Euclidean distance

2 - 16



LITERATURE REVIEW

I,-> 4.

40

Case 1
Use a sMall value for T
4 classes

Case 2
Use a MediuM value for T
2 classes

Case 3
Use a large value for
1 class

Figure 2.3.2 Effects of the threshold and starting points in
the simple-seeking algorithm.

concept. This algorithm is similar in principal to the scheme

of the simple cluster-seeking algorithm, with the exception

that it first identifies the cluster regions which are

farthest apart.

Suppose that we have a set of N sample patterns (x,, x,,...,

xM). This procedure requires an initial starting point.

Additional points to be used as cluster centers are found by

finding the furthest points from the first and subsequent

cluster centers. After the first cluster center is given, the

point that is farthest away (or least similar) from the first

cluster center becomes the second cluster center. Subsequent

2 - 17
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cluster centers are found by computing the distances from each

of the remaining sample points to the cluster centers and

saving the minimum of these distances for each sample point.

The sample point whose minimum distance to the cluster centers

is the largest is then considered. If this distance is

greater than a threshold value, it becomes a new cluster

center. Otherwise, this part of the algorithm ends, and all

remaining sample points are assigned to the class of their

nearest cluster center. The threshold value is often defined

as a fraction of the average distance between cluster centers,

0.5 is typically used. A summary of the maximum distance

algorithm is given below.

Step 1. Choose z, = x,, where x, can be any sample

point.

Step 2. z2 is the farthest sample from z, .

Step 3. For z3 to zK:

Step 4. Compute the distance from each remaining

sample, xi, to all z's. Save the minimum of these

distances for each xi.

MINi-min{i -x-zl, Vj) (2.3.6)
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Step 5. Consider the sample with the largest

minimum distance.

MAX-max{MIN i , Vi} (2.3.7)

If that distance is an appreciable fraction of

typical distances between existing z's, then the

sample is a new cluster center. Go to step 4.

Otherwise go to step 6.

Step 6. Assign the remaining samples to the

cluster of the nearest z,.

The maximum distance algorithm is illustrated in Fig. 2.3.3.

In this simple example we have obtained three cluster centers

x1, x,, and x,. To assign the remaining samples to the domain

of these centers we simply assign each sample to its nearest

cluster center. Thus, we obtain the cluster domains (x,, x3,

x,}, {x2 , x6), and {x,, x,, x,, x8 , x1 )o. These results agree

with the cluster domains that we would intuitively expect to

get from these data.

The results of the maximin distance algorithm depend on the

initial cluster center and the threshold value. The threshold

value determines the number of classes. As the value of the

threshold increases the number of resulting classes is

decreased.
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Variable Ui

r

Figure 2.3.3 Sample patterns used in illustrating the
maximum-distance algorithm.

2.3.5 K-Means Algorithm.

The K-Means algorithm is based on the minimization of a

performance index which is defined as the sum of the squared

distances from all points in a cluster domain to the cluster

center. This procedure consists of the following steps.

Step 1. Choose K initial cluster centers zl(1),

z2(1),..., zK(1). These are arbitrary and are

usually selected as the K samples of the given

sample set.

Step 2. At the Kth iterative step distribute the

samples {x) among the K cluster domains, using the
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relation:

xeSj(k) if 1x-zj(k) l<lHx-z(k) i, (2. 38)
Vi-1,2,...,K, 7ij

where S,(k) denotes the set of samples whose cluster

center is z,(k). Ties in expression (2.3.8) are

resolved arbitrarily.

Step 3. From the results of step 2, compute the

new cluster centers z,(k+l), j = 1, 2,..., K, such

that the sum of the squared distances from all

points in Sj(k) to the new cluster center is

minimized. In other words, the new cluster center

zj(k+l) is computed so that the performance index:

Ji llx-zj(k+l) P, j-1,2,...,K (2.3.9)
xeSj (k)

is minimized. The z,(k+l) which minimizes this

performance index is simple the sample mean of

S,(k). Therefore, the new cluster center is given

by:

z,(k+l)- _- x, (2.3.10)
Nj xeSj(k)
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where Nj is the number of samples in S,(k). The

name "K-Means" is derived from the manner in which

cluster centers are sequentially updated.

Step 4. If zj(k+l) z,(k) for j = 1, 2,..., K, the

algorithm has converged and the procedure is

terminated. Otherwise go to step 2.

The behavior of the K-Means algorithm is influenced by the

number of cluster centers specified, the choice of initial

cluster centers, the order in which the samples are taken, and

the geometrical properties of the data (Fig. 2.3.4).

Initial settings

Case 1

Final classification

* * *

* *

Initial settings

Case 2

Final classification

40 .0

Figure 2.3.4 Illustration of k-means algorithm.
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Although nogeneral proof of convergence exists for this

algorithm, it can be expected to yield acceptable results when

the data exhibit characteristic pockets which are relatively

far from each other. In most practical cases the application

of this algorithm will require experimenting with various

values of K as well as different choices of starting

configurations.

2.3.6 Hierarchical Clustering.

Hierarchical clustering begins with each sample point as a

separate cluster. By using a measure of similarity, clusters

are joined in a step by step process. Clusters that are most

similar are first grouped together to form a new cluster.

Then the similarity threshold is changed and clusters that are

more similar than the threshold are grouped. This continues

until all objects are in the same cluster Fig. 2.3.5). The

results can be evaluated at a particular threshold value or at

a desired value of k, the number of classes. The general

algorithm follows.

Step 1. Begin with each single object, x,, as a

separate cluster z,.

Step 2. Compute D,, = the distance from z. to zJ for

all z's.

Step 3. If D1, < T, merge z, and z1 .

Step 4. Increase T and go to step 2 until all
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clusters are merged into one.

In hierarchical clustering, when two entities are merged, the

merger is permanent. This reduces the number of possibilities

that need to be tested (compared to complete enumeration).

a * a 4 * 0

Step 1 12 classes

Step 3 3 classes

S..

Step 2 4 classes

ItIep -t r class

Figure 2.3.5 Illustration of hierarchical algorithm.

Several methods, or criteria, for forming clusters can be

used. The most frequently used are:

* Single linkage.

Distance is determined by the nearest neighbors of

each cluster (Fig. 2.3.6a).

D-minrDp, D ( 2.3. 11)
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0

0

0
p

a

0

Figure 2.3.6a Simple linkage.

* Complete linkage.

Distance is determined by the furthest neighbors of

each cluster (Fig. 2.3.6b).

(2.3.12)

* Centroid linkage.

The clusters with the most similar mean vectors are

merged (Fig. 2.3.6c).

NN N N
r - S + q S - q S (2.3.13)
N+Nq Pr Np+N qr Np+N PQ-LP 'q Pr N. q
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m

*

S

S
*

* 0

Figure 2.3.6b Complete linkage.

* S

~ct--------S
a

0
m

0

Figure 2.3.6c Centroid linkage.
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The Squared Euclidean Distance is used.

* Average linkage between groups.

The average similarity between all entities in the

new cluster is considered (Fig. 2.3.6d).

S r-Sp+Srtr pr qT (2.3.14)

..... - . .. __..' - - " I \

----- .- _- .- .- .- . . ------ - - -- -

r .1c

I AL-- _- -: ... . . • -'-'2--_-_- ""

Figure 2.3.6d Average linkage between groups.

The average within group similarity for a cluster

formed by merging t and r is:

SM +SM + Str

(Nc+Nr) (NN+Nr-1)/2
(2.3.15)
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where:

SM, = sum of all pairwise similarities among

entities within cluster i.

N, = number of entities in i.

* Average linkage within groups.

The average similarity for links between the two

clusters is considered (Fig. 2.3.6e).

Str

NtNr
(2.3.16)

Figure 2.3.6e Average linkage within groups.
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2.3.7 Dynamic Coalescence.

The dynamic coalescence model given by Watanabe (1985) forms

clusters by merging points and clusters as in hierarchical

clustering. The difference is that the points-clusters are

actually moved in space by an attractive force toward one

another. When two clusters touch, they are merged into one.

The objective of dynamic coalescence is to minimize the

entropy of the data. The dynamical motion of the points by

mutual attraction will result in formation of more ordered

structure (Fig. 2.3.7).

Step 1 12 classes

Step 3 ass
Step 3 3 classes

>^-

Step 2 10 classes

Step 4 1 class

Figure 2.3.7 Illustration of dynamic coalescence algorithm.
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If the position of cluster i is given by the coordinates of

the vector z,, the motion of this cluster is determined by the

dynamic equation:

dz.
-Fi (2.3.17)dt i

where

NM z.-z (ij P glZj-F-A . [ ] n-z) gi\zp-z - )] (2.3.18)
j-.1 I -

The effect of cluster j on i is a function of the mass, m, of

i and j.and the distance between i and j. A larger cluster

will exert a greater force, and, therefore, p is greater than

0. The constant, A, is also greater than 0 since the force is

attractive. The factor g(6), where 6 = I z, - z, , is a force

function. Two types of force can be used:

* Gaussian:

62
g(b) -c exp[- 2C ] (2.3.19)

2a 2

* Cauchy:

g()-Mc O (2.3.20)
52+02
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a is a parameter that determines the strength of the force in

relation to the distance between the two clusters. If i and

j are further apart than a, the force is very small. The

algorithm is summarized below.

Step 1. Begin with each sample point, xf , as a

separate cluster, zi.

Step 2. Calculate the change in position of each

cluster for a small dt.

dzi-Fidt (2.3.21)

The new position of cluster i is then

zi(t+dt)-zi(t)+dz (t) (2.3.22)

Step 3. If the distance between two clusters is

less than the sum of their radius, then the

clusters are merged.

\Iz-zzýrj+rj (2.3.23)

The radius of a cluster is

r() (2.3.24)
r<j (m,) n ro

where ro is the radius of each original sample point

and n is the number of points in the cluster.

Step 4. The mass of the newly merged cluster is

mr+m (2.3.25)
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The position of the newly merged cluster is

zimi+z m (2.3.26)
mi+m.

Step 5. Repeat until all clusters are merged into

one.

Like hierarchical clustering, the outcome of the dynamic

coalescence model does not depend on a starting point or

points. The results will be affected by the values of the

parameters A, p, -and a. Large values for these parameters

cause large changes in position of the points for each dt.

This can result in undesirable changes in the structure of the

data.

2.4 Feature Selection and Extraction.

Before a pattern recognizer is designed, it is necessary to

consider the feature extraction and data reduction problems.

Any object or pattern which can be recognized and classified

possesses a number of discriminatory properties or features.

The first step in any recognition process, performed either by

a machine or by a human, is to consider the problem of what

discriminatory features to select and how to extract these
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features. It is evident that the number of features needed to

successfully perform a given recognition task depends on the

discriminatory qualities of the chosen features. However, the

problem of feature selection is usually complicated by the

fact that the most important features are not necessarily

easily measurable, or, in many cases, their measurement is

inhibited by economic considerations.

It is evident that feature selection and extraction plays a

central role in pattern recognition. In fact, the selection

of an appropriate set of features which take into account the

difficulties present in the extraction or selection process,

and at the same time result an acceptable performance, is one

of the most difficult tasks in the design of pattern

recognition systems.

The feature extraction problem plays a central role in

preprocessing and data reduction. This problem consists of

determining certain invariant attributes of the pattern

classes under consideration. These attributes are then used,

for example, to reduce the dimensionality of the pattern

vectors by means of a linear transformation. Once a set of

attributes has been selected, the extraction process consists

simply of extracting these attributes from the patterns under

consideration (Fig. 2.3.8).
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Variable U1

.5

r Variable U- f(Ui,U2 )
I~J-P

Variable Uk

Figure 2.3.8 Simple example of feature extraction.

Pattern preprocessing generally involves two major tasks:

clustering transformation and feature selection. A major

problem in pattern recognition is the development of decision

functions'from sets of finite sample patterns of the classes

so that the functions will partition the measurement space

into regions each of which contains the sample pattern points

belonging to one class. This argument leads to the concept of

clustering transformation, which is made on the measurement

space in order to cluster the points representing samples of

the class. Such a transformation will maximize the intreset

distance, while minimizing the intraset distance. The

intreset distance is defined as the mean-square distance

between pattern points that belong to two different classes.
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The intraset distance is the mean-square distance between

pattern points of the same class.

Through selection of the most effective features, the

dimensionality of the measurement vector can be reduced.

Feature selection may be accomplished independently of the

performance of the classification scheme. Optimum feature

selection is dictated by the maximization or minimization of

a criterion function. Such an approach may be referred to as

absolute feature selection. An alternative approach is

performance-dependent feature selection , the effectiveness of

which is directly related to the performance of the

classification system, usually in terms of the probability of

correct recognition. When the feature distribution for each

pattern class in known, we may use divergence of entropy

function in effecting feature selection. When the feature

distribution for each pattern class is unknown, nonparametric

feature selection based on direct estimation of the error

probability may be used.

2.4.1 Feature Selection Through Entropy Minimization.

Entropy is a statistical measure of uncertainty. For a given

ensemble of pattern vectors, a good measure of intraset
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dispersion is the population entropy, given by:

H--E plnp) (2.4.1)

where p is the probability density of the population, and Ep

is the expectation operator with respect to p. The entropy

concept can be used as a suitable criterion in the design of

optimum feature selection. Features which reduce the

uncertainty of a given situation are considered more

informative than those which have the opposite effect. Thus,

if one views entropy as a measure of uncertainty, a meaningful

feature selection criterion is to choose the features which

minimize the entropy of the pattern classes under

consideration. Since this criterion is equivalent to

minimizing the dispersion of the various pattern populations,

it is reasonable to expect that the resulting procedure will

have clustering properties.

Consider M pattern classes whose populations are governed by

the probability densities p(x/w,), p(x/w2 ),..., p(x/w.). The

entropy of the ith population of patterns is, from Eq. 2.4.1,

given by:

Hi--fp( x ) lnp(- fdx (2.4.2)x 1 1
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where the integration is taken over the pattern space. It is

observed that, if p(x/x1) = 1, indicating no uncertainty, Hi

= 0, in agreement with the previous interpretation of the

entropy concept.

Assume that each of the M pattern populations is characterized

by a normal probability density function, p(x/w.) <==> N(mi,

Ci), where m. and Ci are the mean vector and covariance matrix,

respectively, of the ith population. In addition, it will be

assumed that the M covariance matrices describing the

statistics of the M pattern classes are identical. With these

assumptions in mind, the basic idea consists of determining a

linear transformation matrix A, which operates on the pattern

vectors to yield new vectors of lower dimensionality. This

transformation may be written as:

yl-AMxllxl (2.4.3)

where the transformation matrix is determined by minimizing

the population entropies of the various pattern classes under

consideration. In Eq. 2.4.3 x is a n-vector, y is an image m-

vector of lower dimensionality than x, and A is an m x n

matrix. The rows of the matrix A consist of the selected m

feature vectors a', a2',..., a,' which are row vectors.
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Thus, the matrix A is given by:

al

a2
A- ' (2.4.4)

am

The problem is how to select the m feature vectors so that the

measurement vector x is transformed to the image vector y

while minimizing the entropy function defined by Eq. 2.4.2.

A multivariate normal distribution is completely characterized

by its mean vector and covariance matrix. This matrix is, in

turn, characterized by its eigenvalues and eigenvectors. The

eigenvectors may be regarded as the property vectors of the

patterns under consideration. Some of the property vectors

carry less information in the pattern recognition sense than

others and may therefore be ignored. This phenomenon suggests

a feature selection procedure whereby the most significant

property vectors are chosen as feature vectors. These feature

vectors can then be used to construct the transformation

matrix A. After the formation of the matrix A, the number of

vectors utilized should be large enough for the image patterns

to carry sufficient discriminatory information.

2.4.2 Karhunen-Lobve Expansion to Feature Selection.

The application of the K-L expansion to feature selection may
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be viewed as a linear transformation. If we consider:

-(Q< , 2, ..., aQ ), m<n (2.4.5)

to be the transformation matrix, then, from Eq. 2.4.5, the

image patterns are the coefficients of the K-L expansion, that

is, for any pattern x, of class w, we know:

e-Q'x, (2.4.6)

Since n' is an m x n matrix and x is an n-vector, we see that,

if m < n the e, are image vectors of lower dimensionality.

It can be shown that the optimum properties of K-L expansion

are satisfied if the columns of the transformation matrix n

are chosen as the m normalized eigenvectors corresponding to

the largest eigenvalues of the correlation matrix R. The

above notation can be expressed by defining the matrix:

A-Q- (2.4.7)

where the rows of A are now the normalized eigenvectors

corresponding to the largest eigenvalues of R. If we let y =

e, then, for any vector x, the reduced image vectors are given
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by:

|yjlf-A~lxlxj (2.4.8)

the foregoing results may be summarized as follows:

SCompute the correlation matrix R from the

patterns of the training set.

* Obtain the eigenvalues and corresponding

eigenvectors pf R. Normalize the eigenvectors.

*Form the transformation matrix i from the m

eigenvectors corresponding to the largest

eigenvalues of R.

* Compute the coefficients of the expansion. These

coefficients represent the reduced image patterns.

Although the assumption that all pattern populations must have

identical means is certainly a limitation of the K-L

expansion, one should not conclude that this approach to

feature selection is without merit. Assumptions such as this

one are characteristic of most statistical methods of

analysis. The success of any given method depends simply on

how closely the data under consideration conform to the basic

assumptions underlying the development of the statistical

technique.
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2.5 Classification Success Index.

In most real life clustering situations, a researcher is faced

with the dilemma of selecting the number of clusters or

partitions in the final solution (Everitt, 1979; Sneath and

Sokal, 1973). Virtually all clustering procedures provide

little if any information as to the number present in the

data. Nonhierarchical procedures usually require the user to

specify this parameter before any clustering is accomplished

and hierarchical methods routinely produce a series of

solutions ranging from n clusters to a solution with only one

cluster present (assume n objects in the data set). As such,

numerous procedures for determining the number of clusters in

a data set have been proposed (Dubes and Jain, 1979; Milligan,

1981). When applied to the results of hierarchical clustering

methods,' these techniques are sometimes referred to as

stopping rules. Often, such rules can be extended for use

with nonhierarchical procedures as well.

The application of a stopping rule in a cluster analytic

situation can result in a correct decision or in a decision

error. Basically, two different types of decision errors can

result. The first kind of error occurs when the stopping rule

indicates k clusters are present when, in fact, there were

less than k clusters in the data. That is, a solution
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containing too many clusters was obtained. The second kind of

error occurs when the stopping rule indicates fewer clusters

in the data than are actually present. Hence, a solution with

too few clusters was obtained. Although the severity of the

two types of errors would change depending on the context of

the problem, the second type of error might be considered more

serious in most applied analyses because information is lost

by merging distinct clusters.

In this study the Calinski and Harabasz (1974) index was used

to determine the number of clusters. This index is computed

as:

trace B
k-1k-1e (2.5.1)

trace W
n-k

where n and k are the total number of items and the number of

clusters in the solution, respectively. The B and W terms are

the between and pooled within cluster sum of squares and cross

products matrices. The maximum of this index indicates the

correct number of partitions in the data.
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3 Data Description.

Many conference sessions, workshops and professional papers

have been devoted to the merits of different methods of

performance analysis and the merits of specific performance

measures. Miller (1980) has summarized this literature and

suggested the need for a simple framework using three or four

measures of efficiency and effectiveness. In this paper a set

of indicators are used to classify the transit systems. And

further a small unique set of indicators can be selected from

these concepts to give the same classification results.

For this study the three following sets of data were used:

* Operating characteristics of the systems.

* Socioeconomic characteristics of the service

area.

* Ratios formed by the variables in the other two

sets.

Some data was obtained from the Department of Transportation

which collects this data from all transit systems that request

financial assistance from MN/DOT. Also data was collected

from other sources, such as, Department of Revenue, and

Minnesota State Demographer.
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3.1 Systems Collected.

All transit systems in the state of Minnesota that apply for

assistance from the state are included in the analysis.

MN/DOT currently uses a peer grouping based on population and

type of service provided. The eight peer groups are listed in

the following Table 3.1.1. One goal of this clustering

analysis will be to compare the results with the peer groups

established by MN/DOT. Some problems can be found in the

present peer grouping. Some small urban systems perform more

like some of the urban systems. Also, there is a problem with

the population criterion for small urban and rural systems.

The criterion is used when the transit service is within a

city, but not for counties. Although most counties have

populations over 2,500, they are considered rural because they

operate in rural areas outside of a city.

3.2 Variables.

Not all researchers agree that multiple measures of transit

performance are needed. Several authors have advanced claims

that a single measure is sufficient. Nash (1980) prefers cost

per passenger or passenger per mile when analyzing alternative

investments for management. Patton (1983) has suggested that
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Table 3.1.1 Peer groups proposed by Mn/DOT.

1. Metropolitan Transit Commission
1 System
Fixed route
Minneapolis - St. Paul metropolitan area

2. Large Urban
1 System
Fixed route
Duluth Transit Authority

3. Twin Cities Regular Route
1 System
Fixed Route
Private Operators
Minneapolis - St. Paul suburbs

4. Twin Cities Dial-A-Ride (Metro Mobility)
3 Systems
Specialized service
Minneapolis - St. Paul metropolitan area

5. Urban
3 Systems
Fixed route
Population over 50,000

6. Urban Dial-A-Ride
4 Systems
Specialized service
Population over 50,000

7. Small Urban
24 Systems
Fixed route and/or Specialized service
Population 2,500 to 50,000

8. Rural
19 Systems
Fixed route and/or Specialized service
Population under 2,500
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transportation statistics on performance can be integrated

about the indicator of cost per passenger. Each assumes that

the overreaching goal for transit is transporting passengers

for the minimum cost. Kneafsey (1975) refers to this as

"efficiency-in-the-small" or cost minimization to the firm.

Allocative efficiency, what Kneafsey calls "efficiency-in-the-

large", is more suitable for transit performance analysis.

This defines efficiency in terms of resources used to produce

service. By this definition, efficiency is a statement about

the achievements of an agency in transforming a set of inputs

into a set of outputs. Others have used "technological

efficiency" for this concept in public sector analysis in

contrast to "economic efficiency".

In order to create a valid and applicable classification of

bus transit systems, several considerations were used to

select an appropriate data base. The source of data should be

reliable with all the public transit systems in Minnesota

represented. The variables from the data base should be

comparable across systems. They should be compiled using

standard definitions and in similar ways for each agency and

they should be validated for accuracy. The variables used to

form the data base should be verified from other studies that

they are indeed related to transit performance and they should

also be easily understood and used by the transit community.
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Several factors affect the bus transit performance either

directly or indirectly. As such these factors are potentially

useful in establishing a classification scheme that can be

used.to explain the variation among bus operations. As the

data is the only criterion to classify the transit systems,

should be developed to meet some requirements. The data must

reflect the main characteristics of a transit system and the

changes occurring in a transit system over time. Also the

data has to be available for every transit system and reliable

(Table 3.2.1).

Confusion over defining efficiency has reduced the value of

many studies. Public transit agencies can not focus on a

single objective function as they must respond to the

objectives of various "publics". Advocacy of single measures

of transit performance integrating efficiency and

effectiveness has not aided transit performance. Separate

measures provide more useful results.

From a large set of possible variables a set of data was

chosen that could reflect the service area characteristics

that constrain the decisions made by transit operators. For

each transit system, three different sets of data have been

introduced. The first is composed of operating

characteristics of the transit systems, the second is a set of
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Table 3.2.1 Summary of the collected data.

INDICATORS

Transportation data
Operating Cost
Operating Revenue
Government Subsidy
Vehicle Miles
Vehicle Hours
Passengers
Vehicles
Employees

Socioeconomic data
Population
Income
Households
Driver's License
Unemployment
Poverty Level
Sales Tax
Property Tax
Population Density
Average Age
Hi/way Expenditures

ESTI- COUNTY
MATED CITY

TRANSIT

NO
NO
NO
NO
NO
NO
NO
NO

YES
NO
YES
YES
YES
YES
NO
NO
YES
NO
NO

TRANSIT MN /
TRANSIT MN /
TRANSIT MN /
TRANSIT MN /
TRANSIT MN /
TRANSIT MIN.
TRANSIT MIN.
TRANSIT MIN.

CITY
COUNTY
CITY
CITY
COUNTY
COUNTY
COUNTY
COUNTY
COUNTY
COUNTY
COUNTY

SOURCE OF DATA

DOT
DOT
DOT
DOT
DOT
TRANSIT REPORT
TRANSIT REPORT
TRANSIT REPORT

MIN. STATE DEMOGRAPHER
MIN. STATE DEMOGRAPHER
MIN. STATE DEMOGRAPHER
MOTOR VEH. CRASH DATA
MINNESOTA IN THE 80's
MINNESOTA IN THE 80's
DEPARTMENT OF REVENUE
DEPARTMENT OF REVENUE
MIN. STATE DEMOGRAPHER
MIN. STATE DEMOGRAPHER
DEPARTMENT OF REVENUE

socioeconomic indicators of the area served by the system, and

the third set consist of ratios formed by the variables in the

other two sets (Fig. 3.2.1).

From the first set, eight aspects of transit systems were used

to characterize transit systems variables, employees, cost,

revenue, government subsidy, vehicle hours, vehicle miles and
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Ratios
42%

Ra l data
58%

Socioeconomic
58%

Figure 3.2.1 Type of data used.

passengers. The number of vehicles and the number of

employees indicate the size of the system. Size reflects a

number of constraints of transit management. Organized labor

units are more influential in larger agencies. Efficient

route scheduling is more difficult, and managing large numbers

of employees is more complex. These factors cause

diseconomics of scale reducing the advantages gained through

service integration. Very small systems also suffer from

constraints that restrict efficient use of resources.

Operating cost include all costs of the transit system, wages,

capital expenses, maintenance and repair, contracts for

private operators, insurance and taxes. Revenue consists

primary of fare box revenues but also include special
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contracts with institutions, such as Universities and large

businesses along with income from charter services.

Government subsidy is the total assistance provided by local

state and federal governments, to make up for the difference

in transit systems, operating cost and operating revenue.

Total vehicle miles and total vehicle hours are the annual

miles and hours compiled by the system's fleet. Vehicles

include the number of operating and back-up vehicles.

Operating and government subsidy, vehicles, and employees are

known as service inputs. They represent resources which are

used by the system. Total vehicle miles and total vehicle

hours are service outputs, and they show what the system

provides to the service area. Operating revenue and

passengers are measures of service consumption. The number of

passengers indicates how much the service is used, and

operating revenue similarly reflects use of the service since

revenue increases as use increases.

The second set of data has eleven socioeconomic factors of the

service area. Population, households, driver's license,

income, sales tax, property tax, highway expenditures,

population density, age, unemployment, poverty level. The

service area population is a socioeconomic factor which may

indicate the potential market for the system. If an indicator

3 - 9



DATA DESCRIPTION

of productivity such as passengers per revenue vehicle mile,

for example, is used as a measure of transit performance,

consideration must then be given to the population

characteristics of the community, the system serves. If level

of service are equal, passenger use has been found to vary

directly with population (Sinha C. K., 1980). Accordingly,

total population of the urban area is the variable used in the

system classification. Number of households and number of

driver's license give the need for transit in the area.

The socioeconomic status of the area is given by the income,

property tax, highway expenditures and sales tax. Poverty

level and unemployment can be used to determine the type of

service, the system has to provide. These measures reflect

the need to serve special groups such as the elderly,

handicapped and people with low income. Failure to recognize

urban areas that have large concentrations of such special

population groups may result in inaccurate assessments of

transit performance. In general, it would seem reasonable to

assume that those transit systems that provide a high level of

service to the elderly and the handicapped would occur higher

unit operating costs than do those systems in cities with a

small elderly and handicapped population.

There is a little disagreement that the population as well as
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the area of a city play some role in both the provision and

the consumption of transit service. Although size of the

population alone can give some indication for the ridership

levels, additional insight into transit performance can be

gained if land area is integrated into the analysis. In

general, transit service is more efficiently an defectively

provided in high density areas. Furthermore, transit

operational and financial performance is affected not only by

density of residential population but also by the density and

size of nonresidential (i.e. industrial and commercial)

clusters in an urban area. The significance of such a

relationship permits estimation of the effect of different

land-use policies on transit performance.

The third set of the data are ratios of the other two data

set. They are known as performance indicators since they are

often used to determine the performance of the transit system.

There are three primary types of performance indicators, cost

efficiency, cost effectiveness, and service effectiveness.

Cost efficiency indicators measure the service inputs (labor,

capital, fuel) to the amount of service produced (service

outputs: vehicle hours, vehicle miles). Cost effectiveness

indicators measure the level of service consumption

(passengers, operation revenue) against service -inputs.

Finally service effectiveness indicators measure the extent to
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which service outputs are consumed.

3.3 Missing Data.

Missing information poses a unique analytical problem. Both

valid zeros and "no information reported" codes are

represented by zeros (Fig. 3.3.1). Whenever possible, other

information available in the data base was pieced together to

provide for missing data or to distinguish between valid zeros

and failure to report. Missing values encountered at any

point in the computation of basic and ratio variables and

during statistical procedures cause problems and make the

results insignificant. The missing values problem has a

cumulative effect as factors are dropped from the analysis.

3.4 Data Analysis.

One objective of this research is to establish a small, unique

subset of indicators that is particularly useful for

classifying the transit systems. The goal is to identify the

minimum amount of data necessary to convey the maximum amount

of information. The dimensionality of the data is reduced in

two ways, feature selection and feature extraction.
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i

\o d
s•

I

For some systems
15%

Figure 3.3.1 Collected data.

Feature selection was used to remove highly correlated

variables. When two or more variables were highly correlated

only one was not removed from the set. To select this

variable the following criteria were used:

* Representativeness of the difference between the

systems by this variable.

* The distribution of values in the variable has to

be as close to normal as possible.

* Ease of collection of the variable was assessed

by the percentage of data missing.

* The variable selected has to be easily understood

by transit managers.
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Feature extraction is the mapping of a set of points in N-

dimensional space to M-dimensional space where M is less than

N. This is done because some measurements are redundant or

highly correlated. The dimensionality can thus be reduced

with little loss of information. Also computations, for

classification are easier when the dimensionality is reduced.

Furthermore in the case where the sample is reduced to two or

three dimensions, the data is physically more meaningful and

can be plotted.

Karhunen-Loeve is a linear feature extractor mapping ixil to

ljyll via a q by p matrix JITII such that |jyjj = JIT1 jj|xI|. In the

Karhounen-Loeve expansion, T is composed of the eigenvectors

corresponding to the q largest eigenvalues of the covariance

matrix of x. Before Karhounen-Loeve was applied, the both

data sets, operating and socioeconomic, were normalized. This

was done so that variables with large magnitudes would not

receive more weight in the clustering analysis.
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4 Methodology.

4.1 Classification Algorithms Applied.

In this study two methods were used to classify the transit

systems, the combined method and the new method. The combined

method is a combination of k-means and maximum distance

classification methods. This method was used because it is

fast, easy to implement and gives fairly good results. On the

other hand the new method gives much better results and can

handle more complicated data structures but it needs more

computation time.

4.1.1 Combined Method.

This method is not actually a new method, is a combination of

two existing classification methods, k-means and maximum

distance. These two algorithms were chosen for further

examination because of their satisfactory results.

The systems chosen by the maximum distance algorithm as

cluster centers were used as the initial cluster centers for

the k-means algorithm. This improved both algorithms because:

* The initial points for k-means are now more

likely to be spread evenly throughout the data.
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* Instead of just assigning the remaining points to

the nearest cluster center found by the maximum

distance, these cluster centers are only used as

initial cluster centers for the k-means algorithm.

Also in order to eliminate some disadvantages, the two

algorithms were used with some changes. The results now are

better than by using the k-means or the maximum distance

algorithm alone.

Suppose that we have a set of N sample patterns {x , x,,...,

x,}. This procedure requires only the desired number of

clusters K. The two parts of the algorithm are described by

the following steps.

Part 1. (maximum distance).

Step 1. For all the pairs of points x, and x,

compute the distances di, between these points and

save the maximum of these distances.

maxd-max{dj[xi, x] , Vi, j, i} j) (4.1.1)

Step 2. The two points x,, x, with the maximum

distance db become the first two cluster centers z.

and z2.

Step 3. For z3 to zK:

Step 4. Compute the distance from each remaining
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sample, x,, to all z's. Save the minimum of these

distances for each xj.

MINi-miniblx-zjl, Vj) (4.1.2)

Step 5. Consider the sample with the largest

minimum distance.

MAX-max{MIN i , Vj} (4.1.3)

If the zK cluster center was calculated then go to

step 6 else go to step 4.

Part 2. (k-means).

Step 6. Set the k initial cluster centers z1(1) =

z1 , z2 (2) = z2,..., ZK(1) = zK*

Step 7. At the kth iterative step distribute the

samples {x} among the K cluster domains, using the

relation:

xeSj(k) if lx-zj(k) ltx-z (k)t, (4.1.4)
Vi-1,2,...,K, ivj

where Sj(k) denotes the set of samples whose cluster

center is zj(k).

Step 8. From the results of step 7, compute the new

cluster centers zj(k+l), j = 1, 2,..., K, such that

the sum of the squared distances from all points in

S(k) to the new cluster center is minimized. In

other words, the new cluster center z,(k+l) is
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computed so that the performance index:

Ji- E 1L-zj(k+l)lP, j-1,2,.... ,K (4.1.5)
xeSj (k)

is minimized. The z,(k+l) which minimizes this

performance index is simple the sample mean of

Sj(k). Therefore, the new cluster center is given

by:

z (- 1)( -- - x, j-1,2,...,K (4.1.6)
Nj xes (ck)

where NJ is the number of samples in S,(k).

Step 9. If z,(k+l) = z,(k) for j = 1, 2, ... , K, the

algorithm has converged and the procedure is

terminated. Otherwise go to step 7.

The results of the combined method does not depend on any

initial selections or any threshold value. In all the cases

that the combined method was tested gave better or the same

results than k-means or maximum distance methods (Fig. 4.1.1).

4.1.2 New Method.

Cluster seeking may be viewed as a problem in unsupervised

pattern recognition. Suppose that we are given a set of

patterns without any information whatsoever as to the number

of classes present in the group. The unsupervised learning

problem may be stated as that of identifying the classes in
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Figure 4.1.1 Application of combined and maximum distance
methods on the same data set.
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the given set of patterns. If we are willing to accept

cluster centers as a method of representation, one obvious way

of characterizing a given set of data is by cluster

identification. The application of cluster-seeking algorithms

to unsupervised learning is, in principle, straightforward.

Suppose that we are given a set of patterns (x1 , x,,..., x,} of

unknown classification. These patterns may be submitted to

one or more algorithms in an effort to identify representative

cluster centers. The resulting cluster domains may then be

interpreted as different pattern classes.

Being mechanical simulations of human perception, the methods

of pattern recognition may profit from imitating a certain

special aspects of human perception. In trying to see a

"form" in a collection of points, the formation of patterns

will be aided by an imaginary connection among the points.

The areas of the data space were the points are "dense" are

considered to include cluster centers (Fig. 4.1.2). But a

classification method needs decision functions which generate

the partition boundaries in the pattern space to separate

patterns of one class from another. The method, that is

described, is using the potential function concept to

determine the decision functions and the partition boundaries.

Suppose that we want to distinguish between two pattern
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S.. 6.Dense * , . Dense
S''64Area . Area
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space. If these sample pattern points are likened to some4. 4. .I4

. .l• 40dl. 4. 4.

kind of energy source, the potential at any of these points

4. .*4* * - Densedod& e.o

away from the sample pattern point, x4.1.3)

Fiure 4analogy.2 Dense areas of points in a data set.

classes, w, and w2 , Sample patterns of both classes are

represented by vectors or points in the n-dimensional pattern

space. If these sample pattern points are likened to some

kind of energy source, the potential at any of these points

attains a peak value and then decreases rapidly at any point

away from the sample pattern point, x. (Fig6 4.1.3). Using

this analogy, we may visualize the presence of equipotential

contours which are described by a potential function K(x, x,-).

For pattern class w,, we may imagine that the cluster of

sample patterns forms a "plateau" with the sample points

located at the peaks of a group of hills. A similar

geometrical interpretation may be visualized for pattern class

w,. These two "plateaus" are separated by a "valley" in which
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the potential is said to drop to zero (Fig. 4.1.4).

K(x)
1.2-

0.8
i 3

0.6 L-

0.4

0

0.2

o -------------------
0 1 2 3 4 5

X
Figure 4.1.3 Potential function for one point.

Although an infinite series expansion is often employed in

mathematical discussions of potential function algorithms, it

clearly is of no practical usefulness. Usually a symmetrical

function of two variables, x and x, is used as a potential

function. By using symmetrical function we can see that

K(x, xk) = K(Xk, x). Functions which can be used as potential

functions are :

K(x, Xk) -exp{-alx-x) (4.1.7)
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d(x)

I

Figure 4.1.4 Case of two classes representation.

K(x, xk) - 1(4.1.8)

K1+a(lx-xkJ

K(x,Xk) a(-2 ), XS (4.1.9)
else K(x,xk) -0

where a is a positive constant, and x - xk X i is the norm of

the vector (x - xk). It is worth noting that these functions

are inversely proportional to the squared distance measure, D2

= x - xk, 2, which is also a characteristic, for example, of

the force in a gravitational potential field. The above

functions are plotted in Fig. 4.1.5 for one-dimensional

patterns and in Fig. 4.1.6 for two-dimensional case.
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Figure 4.1.5 Examples of one-dimensional potential functions
(a - Eq. 4.1.7, b - Eq. 4.1.8).

The value of a in Eq. 4.1.7, 4.1.8, 4.1.9 determines the area

that each point "affects" other points. When this area is

reasonably large the resulting number of classes is small and

when the area is small the resulting number of classes is

large. Before the application of the method either the

desired number of classes or the value of a should be defined,

the method will determine then the value of a or the number of

classes respectively. In this study, always, the number of

classes was given and the value of a was determined by the

method. The basic steps of the algorithm are summarized

below.

Step 1. Choose the number of classes K.

4 - 11
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K(x)I (a)

K(x)

S(b)

Figure 4.1.6 Examples of two-dimensional potential functions
(a - Eq. 4.1.7, b - Eq. 4.1.8).

Step 2. Make a choice for the value of a.

Step 3. Apply the potential function to every data

point and determine the cumulative function from

all the points.

Step 4. Determine the resulting number of classes

Ka .

Step 5. If K < K, or K > K. then decrease or

increase, respectively, the value of a and go to

step 3.

In step 4 the method is using a procedure to determine the

number of classes. This procedure will be presented by two

4 - 12
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examples.

Example 1. Let us apply the method to the patterns shown on

Fig. 4.1.7a using the potential function of Eq. 4.1.9.

Consider that we have cost per mile data for three transit

systems A, B, and C and we want to have two classes. First

the cumulative potential function is calculated. Then all the

pairs of data points are determined. For each pair P, and P,

the line segment between the two data points is defined and

the value of the cumulative potential function is compared

with a threshold T, for all the points on the line segment.

Compare T,K(x) Vxe [Pi P] (4. 1.10)

If at any point the value of the cumulative potential function

K(x) is less or equal with the threshold T then the two data

points are assigned in different classes, otherwise the two

data points are assigned in the same class. For the first

pair of points (Fig. 4.1.7b), A-B, the cumulative potential

function is lower than the threshold T between points x, and

x ,, so the systems A and B do not belong to the same class.

The same result we have for the systems A-C. For the last

pair B-C the function never goes under the threshold T and the

two systems-are assigned in the same class. Considering the

results from all the pairs, we have one class with the system

A and a second class with systems B and C, which is the

- 13
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correct result.

K(x)

T

A B CSB COST / MILE

Figure 4.1.7a Data patterns used in example 1.

Example 2. When for each system there is information for more

than one indicators then the patterns are more complicated.

Consider the case that we have a data set with five transit

systems and we have information for cost per mile and the

number of passengers. On Fig. 4.1.8a we can see the data set

and the potential function on each data point. After

calculating the cumulative potential function we can have a

top-view of the data (Fig. 4.1.8b). Now there are ten

possible pairs. The value of the threshold T depends on the

desired number of classes K. In the case that K = 2 then T =

T,. On Fig. 4.1.8c there is a side-view of the cumulative

potential function for the pairs B-C and C-D. Using the same
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K(x)

1 T
A B C COST / MILE

Figure 4.1.7b Cumulative potential function for example 1.

procedure as in the example 1 we have that systems B and C

belong to the same class and system D belongs to a different

class. The final result is that systems A, B and C belong to

the first class and systems D and E belong to the second

class. If the desired number of classes is K = 3 then T = T2.

By looking the Fig. 4.1.8c and examine the two pairs of data

points B-C and C-D, we have that the three systems belong to

three different classes. The final result is that systems A

and B belong to the first class, the system C belongs to the

second class, and the systems D and E belong to the third

class.

In cases with more than two indicators it is not possible to
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Figure 4.1.8 a. Data patterns used in example 2.
b. Top-view of the cumulative potential

function.
c. Side-view of the cumulative potential

function.

have a view of the data, but the method can be applied and

give satisfactory results. This method has the following

advantages:

* Because each point is under the influence of all

other points, by using the appropriate potential

function, the model is capable of reflecting the

global situation of the distribution of all points.

This is a great advantage over many other

algorithms which consider only the influence of

neighboring points.
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+ Instead of searching the optimum or local optimum

by methods such as hill-climbing, exchange-of-

members, and trial-and-error, the suggested

algorithm seeks directly a global solution for the

data set.

* The algorithm takes into account the chain effect

in the data.

* We can obtain any number of clusters, ranging

from one to No (the number of the initially given

objects).

In the two following figures there are illustrations of the

method. Fig. 4.1.9 shows that the method is suitable to the

case where the chain effect is marked. In this example some

of the two points within the same group are separated by a

distance larger than the distance between some of the two

points belonging to two different groups. The algorithm

embodies such a "chain effect". In Fig. 4.1.10 the

configuration of the points is produced by two normal

distributions. This example shows that the method is very

sensitive to the global situation of the distribution of

points.
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Figure 4.1.9 Data set where the chain effect occurs.

Figure 4.1.10 Data set produced by two normal distributions.
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4.2 Methodology Followed.

In this section, the procedure that will be used in section

4.3, will be described. First, data reduction and data

refinement is introduced. It is often desirable to reduce the

number of variables used in a clustering analysis. One reason

for reducing the dimensionality is that there may be some

redundancy in the variables, i.e. some variables may be highly

correlated. In such cases the dimensionality can often be

reduced with little lose of information. Also, computations

are simplified when there are fewer variables.

Before the classification methods were applied, the data set

was scaled. This was done so that variables with large

magnitudes would not receive more weight in the clustering

analysis. The data set had a wide range of variation in the

variables so it appeared appropriate to scale or to normalized

the data in the set. When the data were scaled a number was

selected, for each variable, so all the data will fall in a

specified range. By using this method all the variables will

be considered with the same weight in the clustering analysis.

On Fig. 4.2.1 there is an example of two dimensional data set.

The data were scaled in a range [0, 100]. In the case that

the data were normalized the average and the standard

deviation of each variable was calculated. Then from each

4 - 19



METHODO LOGY

case the average value was subtracted and the result was

divided by the standard deviation to form a new variable that

will be used for the clustering analysis. After the

normalization all the variables have average equal to zero and

standard deviation equal to 1. After the normalization all

the variables will be considered with the same weight in the

clustering analysis. On Fig. 4.2.2 the data set that was used

for the example on Fig. 4.2.1 is normalized.

Y (Thou.nd.)

0 2 4 6 8 10 12 14

100

80-

60

20o

0

0 10 20 30 40 0 60 70 80 90 100 110O 10 20 30 40 50 60 70 80 90 100 -1

X (Thousands) X

Figure 4.2.1 Example of a data set that was scaled.
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Figure 4.2.2 Example of a data set that was normalized.

After the data reduction and the data refinement was

introduced the classification methods were applied to the data

set. Because of the better performance the new method was

selected for the clustering analysis. Different ways to

classify the transit systems were tested, as it will be

described in chapter 5, in order to get a meaningful

classification. The results of the classification method were

used as prior information to perform Karhunen-Loeve expansion.

After the feature selection we can have a data set, smaller

than the data set used in the initial classification, with a

little loss of information. If we repeat the cluster analysis

with the new data set the result should be the same or close

to the initial result.
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In order to test how the method will classify new information,

e.g. an new transit system, the data set was divided in two

data sets a sample set and a test set. The'data refinement

and the clustering analysis were repeated by using only the

sample data set. By using the classification results as prior

information the Karhunen-Loeve expansion method was used to

obtain the most significant features. Then, by using these

features the test data set was classified and a percent of

misclassifications was calculated.
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5 Analysis of the Results.

5.1 Description of Different Classification Approaches.

In this section different ways, that were used, to analyze the

data will be described. For each case the classification

results will be shown by using a map of the state of

Minnesota, with all the transit systems that were used in the

clustering analysis. On section 5.3 the results that were

found more meaningful will be presented and will be analyzed

more extensively.

In some cases ratios of the raw data, often called as the

performance indicators, were used for the clustering analysis.

This was done to compare the results by using raw data and by

using performance data. On Table 5.1.1 there is a summary of

all the performance indicators that were used.

In cases when a pair of variables are high correlated, one of

the variables was removed from the set. Seven raw variables

and two ratio data were removed because were found to have

correlation greater than nine tenths. These variables are

presented on Table 5.1.2. Only the first variable in each

case was not removed from the data set.
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Table 5.1.1 Performance indicators that were used in the
clustering analysis.

Miles / Employee Hours / Employee
Miles / Vehicle Cost / Mile
Cost / Vehicle Passengers / Mile
Passengers / Hour Hour / Population
Passengers / Population Subsidy / Passenger
Cost / Passenger Revenue / Cost
Revenue / Subsidy Miles / Hour

Table 5.1.2 High correlated variables.

Passengers - Vehicles, Employees, Cost, Revenue.
Population - Households, Driver's license.
Sales tax - Property tax.

Cost / Mile - Passenger / Mile, Passenger / Hour.

For the clustering analysis three primary techniques were

used:

* One-phase classification.

* Two-phase classification.

* Classification with combination.

5.1.1 One-Phase Classification.

In the one-phase classification all the variables were used in

one execution of the algorithm to obtain the results.

Different ways to refine the data were used. In some cases

the data were scaled, normalized or the high correlated
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variables were removed. On the Table 5.1.3 there is a summary

of all the one-phase cases that were tested. In all cases the

desired number of classes was six (After comparing the

classification success index for different number of classes).

Table 5.1.3
were tested.

Different one-phase classification cases that

A:

Data Refinement
Normal
Scaled
Normalized

Variables Used
All the variables
Exclude the correlated

Type of Variables Used
Raw data
Ratios

1234

x xxx

x .x
* xx

x x
* .xx

Cases Tested

B:
1234

xxx x

x x.
.x x

x x
* .xx

C:
1 2 .3 4

xx xx

x x.
.x x

xx..
* xx

x - applies
. - does not apply
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By looking the clustering results for obvious errors the cases

A:l and A:2 were rejected because in both cases there were

many misclassifications, e.g. the MTC was assigned with other

small transit systems. Then by examining more carefully the

results, the cases B:l, B:2, B:3, B:4, C:3 and C:4 were also

rejected because there were many outliers and almost all the

systems were assigned in one large class. Only the cases A:3,

A:4, C:l and C:2 gave satisfactory results.

In cases A:3 and A:4 the results show three large classes and

three small classes. The MTC and Duluth Regular Route were

assigned as outliers. These two are much larger than the

other systems and are considered as a separate class. Also

the system of East Grand Forks was assigned in the second

class as outlier. The third small class has three systems

Albert Lea, Cottonwood County, Red Wing. Although there was

not any obvious error in the results, the three large classes

had mixed systems with different characteristics. The results

are shown in Fig. 5.1.1.

In cases C:1 and C:2 the results show two large classes, one

small class and three outliers. The three outliers are the

MTC, the Duluth Regular Route and the Arrowhead. These

systems are significantly larger and different than the other

systems but also each system is not similar to one another.
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Figure 5.1.1 Classification results for cases A:3 and A:4.
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The fourth class consists of four systems which are located

close to the Twin Cities Metro Area. They are St. Louis,

North Suburban Lines, Medicine Lake Lines and Hopkins. The

fifth class consists of systems that are located in the east

part of the state of Minnesota and the sixth class consists of

systems that are located in the west part of the state (Fig.

5.1.2). The differences between the two classes are basically

in the socioeconomic characteristics. Systems in the fifth

class are located close to urban areas as the Twin Cities,

Duluth, Rochester, St. Cloud. The system of Moorhead, as we

can see from Fig. 5.1.2, belongs in the fifth class. This

happens because the city of Moorhead is close to the city of

Fargo, and for that reason the transit system is more similar

with systems that are located close to urban areas.

5.1.2 Two-Phase Classification.

In the two-phase classification the results were obtained in

two phases, e.g. classify the systems by using socioeconomic

data and then classify each class of systems by using the

transportation data only. The data again in some cases were

normalized or the high correlated variables were removed.

From the previous classification cases it was found that by

scaling the data there was not any improvement in the results.

On Table 5.1.4 there is a summary of all the two-phase cases

that were tested. Always in the first phase the desired
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Figure 5.1.2 Classification results for cases C:l and C:2.
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number of classes was six, as in the previous classifications.

Table 5.1.4 Different two-phase classification cases that
were tested.

PHASE I

Case S1
Normalized

Transportation
Raw data

Case S2
Normalized

Transportation
Raw data

Not correlated

Case T1
Normalized
Socioeconomic
Raw data

Case T2
Normalized
Socioeconomic
Raw data

Not correlated

PHASE II

Case T1

Case T2

Case T1

Case T2

Case S1

Case S2

Case Sl

Case S2
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By looking the clustering results, we can see that for all the

cases where in phase I the transportation data was used, there

were some misclassifications and almost all the systems were

assigned in the same class. On the other hand, by using the

socioeconomic data in phase I, we got satisfactory results.

Also there was no significant difference in the results by

removing or not the high correlated variables.

In the cases where the socioeconomic data were used in phase

I and the transportation data in phase II, the results show

two large classes and four small classes. The MTC and the

North Suburban Lines were assigned as outliers. These two

systems have a significant different service area than the

other systems but also the two areas are not similar to one

another and are considered as a separate classes. The third

class consists of three systems which are located close to the

Twin Cities Metro Area. They are St. Louis, Medicine Lake

Lines and Hopkins. The fourth class consists of systems that

are located close the Duluth Metro Area, St. Louis county.

They are Duluth Regular Route, Duluth D.A.R., Arrowhead,

Hibbing and Virginia. As in the one-phase classification the

fifth class consists of systems that are located in the east

part of the state of Minnesota and the sixth class consists of

systems that are located in the west part of the state (Fig.

5.1.3). Systems in the fifth class are located close to urban
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areas as the Twin Cities, Duluth, Rochester, St. Cloud. Again

the system of Moorhead, as we can see from Fig. 5.1.3, belongs

in the fifth class. This happens because the city of Moorhead

is close to the city of Fargo, and for that reason the transit

system is more similar with systems that are located close to

urban areas. The classification result of phase II is shown

in Fig. 5.1.4. In phase II the two large classes that were

defined from the phase I were used to be divided, each one in

three small classes, by using transportation data.

5.1.3 Classification with Combination.

From the two previous classification techniques satisfactory

results were obtained only when normalized raw data or ratios

data were used. A data set was created with the ratios and

the normalized data. After the classification method was

applied the results show three large and three small classes

(Fig. 5.1.5). The first class consists-of two systems, the

MTC and the Duluth Regular Route. The second class has the

system of East.~Grand Forks and the third class consists of

three systems, Albert Lea, Cottonwood county and Red Wing.

The other systems are divided in the three large classes.

This data set did not give satisfactory results because many

systems were misclassified.
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Figure 5.1.3 Results for two-phase classification (Phase I).
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Class 51

Figure 5.1.4 Results for two-phase classification (Phase II).
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Figure 5.1.5 Results for combination classification.
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5.2 Test of the Classification Method.

An ideal experimental design to test the classification method

would require a controlled experiment: use the data set of the

transit systems, randomly select a part of the data, and then

treat the not selected data as a control group for the

experiment. The experiment will have two phases.

In the first phase, the training or learning phase, the

classifier performs unsupervised classification of the

training data set. Then by using the classification results

as an input, the feature extractor will reduce the

dimensionality of the data set. One way of reducing the

number of dimensions is to perform a transformation of

variables into a smaller number of orthogonal components. The

most efficient way to do this is by extracting eigenvectors

through a well known base function, the Karhunen-Lobve

expansion (principal components analysis), that minimizes a

mean-square error criterion. A reduced number of these

components will be retained, ensuring that the selected

components minimize any loss of information and maintain the

differentiation between observed patterns. In the second

phase we test the classifier with the remaining data, the

verification data.
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5.2.1 Classification of the Training Set.

For the first phase of the control experiment a training data

set was selected. The classification results will be used as

information for the second phase of the experiment. For that

reason the training set should be large enough to provide the

appropriate information about the data. In this case the 70%

of the data was selected as training set, and the 30% of the

data as verification set (Table 5.2.1). The two sets were

selected randomly. Before the classification method was

applied both data sets were normalized.

The new method was applied on the training set for desired

number of classes six. Classification in two phases, with

socioeconomic and transit indicators, was used because of the

good results that this method gave in the previous

applications. On Fig. 5.2.1 are the classification results

from the first phase (socioeconomic indicators), and on Fig.

5.2.2 are the classification results from the second phase

(transit indicators).

By using the classification results, from both phases, the

Karhunen-Lo6ve feature extraction was applied to reduce the

dimensionality of the data. The eigenvalues and the

corresponding eigenvectors are shown in Table 5.2.2 for the

socioeconomic indicators and in Table 5.2.3 for the transit
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Table 5.2.1 Training set and verification set used in the
experiment.

1.
3 .
5.
7.
9.

11.
13.
15.
17.
19.
21.
23.
25.
27.
29.
31.
33.
35.
37.
39.

1.
3.
5.
7.
9.

11.
13.
15.
17.

2.
4.

8.
10.
12.
14.
16.
18.
20.
22.
24.
26.
28.
30.
32.
34.
36.
38.

Training set.
Albert Lea
Appleton
Bemidji
Brainerd
Chisago County
Cloquet
Cottonwood County
Duluth
East Grand Forks
Faribault
Hibbing
Hutchinson
Lincoln County
Mankato
Medicine Lake Lines
Moorhead
North Suburban Lines
Ortonville
Red Wing
Twin Cities M.T.C.

Verification set.
Morris
Pipestone
St. Cloud
St. Louis
Sherburne County
Tri Valley
Virginia
White Bear Area
Winona

Anoka County
Arrowhead
Benson
Carver County
Clearwater County
Columbia Heights
Dakota County
Duluth D.A.R.
Fairmont
Hastings
Hopkins
Le Sueur
Mahube
Marshall
Montevideo
Moorhead D.A.R.
Northfield
Pelican Rapids
Rochester

Pine River
Rochester D.A.R.
St. Cloud D.A.R.
Scott County
Tri Cap
Upsala
Washington County
Willmar

indicators.

The original variables are listed next to the eigenvectors to

indicate the linear combination that makes up each feature.
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Figure 5.2.1 Classification results from the first phase
(socioeconomic indicators).
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IClass 5

Figure 5.2.2 Classification results from the second phase
(transit indicators).
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Table 5.2.2 Eigenvectors for socioeconomic data.
i i l lI i I-

Eigenvalues

% of Variation
Cumulative %

Population
Income
Property Tax
Hwy Expenditures
Population Density
Age
Unemployment
Poverty Level

Eigenvalues

% of Variation
Cumulative %

Population
Income
Property Tax
Hwy Expenditures
Population Density
Age
Unemployment
Poverty Level

(1)

19.7186

76.89
76.89

-0.5795
-0.2105
-0.4250
-0.4026
-0.5084
0.0071

-0.0192
0.1342

(5)

0.7154

2.78
98.22

0.0299
-0.5449
-0.1995
0.0070
0.4125
0.5509
0.3563
0.2478

(2)

1.9929

7.77
84.66

-0.4198
0.2146

-0.0280
-0.4123
0.7263

-0.1224
-0.2409
-0.0783

(6)

0.2424

0.94
99.16

-0.0181
-0.3015
0.0835
0.0640
0.1317

-0.7578
0.2687
0.4834

(3)

1.7027

6.63
91.29

-0.6630
-0.0350
0.4525
0.4236

-0.0198
0.0721
0.3296

-2.4600

(7)

0.1362

0.53
99.69

-0.1876
0.2317

-0.5558
0.6751
0.1236

-0.0049
-0.2630
0.2487

(4)

1.0663

4.15
95.44

0.0991
0.2678

-0.4790
-0.0501
0.0712

-0.1992
0.6675

-0.4427

(8)

0.0698

0.27
99.96

0.0436
-0.6284
-0.1685
0.1610
0.0745

-0.2492
-0.3447
-0.6018
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Table 5.2.3 Eigenvectors for transportation data.

Class 5.

Eigenvalues

% of Variation
Cumulative %

(1)

0.2572

97.55
97.55

Government Subsidy -0.3756
Vehicle Hours -0.6422
Vehicle Miles -0.6057
Passengers -0.2819

Class 6.

Eigenvalues

% of Variation
Cumulative %

Government Subsidy
Vehicle Hours
Vehicle Miles
Passengers

(1)

0.6644

93.70
93.70

0.0380
-0.5848
-0.8099
0.0196

(2)

0.0059

2.23
99.78

-0.6575
0.1016
0.5399

-0.5154

(2)

0.0410

5.78
99.48

-0.7396
-0.3166
0.1801

-0.5658

(3)

5.4E-4

0.20
99.98

-0.6059
-0.0174
0.0242
0.7949

(3)

3.6E-3

0.50
99.98

-0.5940
-0.0374
0.0185
0.8033

(4)

5.9E-6

0.00
99.99

0.2435
-0.7595
0.5838
0.1511

(4)

3.5E-5

0.00
99.99

0.3139
-0.7458
0.5577
0.1845

As an example, in the Table 5.2.3 the first feature, for

class 5, would be computed by the equation:

Y1--0.3756 (Government subsidy)
-0.6422(Vehicle Hours)
-0.6057 (Vehicle Miles)

-2819(Passengers)

(4.4.1)
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This feature alone describes 97.55 percent of the variation in

the original data.

From the features on Table 5.2.2 the first five were used in

the second face of the experiment. According to the

eigenvalues the first five features describe 98.22% of the

variation. From the features on Table 5.2.3 only the first

was used in the experiment for both classes. According to the

eigenvalues the first feature in class 5 describes the 97.55%

of the variation and the first feature in class 6 describes

the 93.70% of the variation.

5.2.2 Test the Classifier by Using the Verification Set.

In the second phase of the control experiment each transit

system in the verification set was classified by using

supervised classification. The information that was obtained

from the first phase of the experiment was used in this phase.

The results are presented on Fig. 5.2.3. By comparing the

results from this classification .with the results from the

classification on section 5.1 we can see that only two transit

systems were misclassified.
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Figure 5.2.3 Classification results of the verification data
set.
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5.3 Recommended Classification.

The cases that gave the best results will be analyzed in this

chapter. There is no specific set of rules that can be

directly applied to determine if a classification result is

good or not. Three characteristics of the resulting

classifications will be considered:

* How the clusters look when graphed.

* The variation within each group as it compares to

the variation between groups.

* How the classes compare to present knowledge of

the systems and peer groupings presently in use.

Scatter plots of one variable versus a second variable show

the geometric structure of the class. By looking at these

plots one can see if the classes form valid clusters in the

data space. Scatter plots of the first and second features

from the Karhunen-Loeve transformation will be considered for

the two data sets. The first two features describe usually

over ninety percent of the variation, so they should give a

good indication as to what the classes look like.

A comparison of the variation within groups to the variation

between groups will not only indicate how similar the

individual members of a group are, but also will tell if the
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groups are distinct. Two groups may have a small within-group

variance indicating that the members within each group are

similar to one another. However, the two groups may actually

be one cluster that has been incorrectly divided. A high

variation between groups will confirm that these two groups

are correctly separated.

In addition to the scatter plots and the variation within and

between each group, knowledge of the systems being clustered

will be used. The classes will be compared to present peer

groupings to see if there is any resemblance. Also, knowledge

about each individual system will help determine whether or

not it is appropriate to put two particular systems in the

same class.

5.4 Scatter Plots.

There are two classifications that gave satisfactory results:

a) When the ratios were used as a data set and the

classification was made in one phase,

b) When the classification was made in two phases, with

socioeconomic and transportation data.

In each case the Karhunen-Loeve feature extraction was used to
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define the most significant features. For each scatter plot

the features that correspond to the two largest eigenvalues

were used.

5.4.1 One-Phase Classification (Ratios).

Twelve ratio data were used in this case and the

classification was done in one-phase. On Fig. 5.4.1 there is

a scatter plot of the first versus the second most significant

feature. These two features represent the 88.11% of the

variation that we can have from all the data.

2

0

-2

-4

-6

-8
A Class 1

SClass 2

S Class 3

S Class 4

SClass 5
-12-

Class 6

-14--
-4 -2 0 2 4 6 8

Figure 5.4.1 Scatter plot for one-phase classification.
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Four of the six classes can be separated from one another and

from the other two classes, there is no overlap among those

classes. Two classes, the first and the sixth, have overlap

on these two features. To understand the way that these two

classes were divided we need to have a graph from the other

features also.

Three classes have only one member in each, Twin Cities

M.T.C., Duluth Regular Route, and Arrowhead. From the scatter

plot it is obvious that Twin Cities M.T.C. (Class 2), and

Duluth Regular Route (Class 3), are very different from the

other systems. Arrowhead is the only member of the fifth

class even though we can not see any significant difference on

the plot from the systems in class 6. The reason is that by

looking this graph, we do not take into account the other

features. The influence of the other features, makes the

system of Arrowhead to be assigned in a different class.

Class 4 includes four systems that are located in the Twin

Cities Metro Area the systems are: Hopkins, Medicine Lake

Lines, St. Louis Park, and North Suburban Lines.

5.4.2 Two-Phase Classification (Socioeconomic,

Transportation).

In this case eight socioeconomic data were used in the first

phase, and four transportation data were used in the second
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phase. On Fig. 5.4.2 there is a scatter plot of the first

versus the second most significant feature from the

socioeconomic data. These two features represent the 84.64%

of the variation that we can have by using all the

socioeconomic data. The scatter plot for this classification
2

0

-2

-4

-6

-8

1

L_ _ Z _ -- C la s s 1

SZ Class 3

SClass 4

X Class 5

S Class 6

1

L j
444

-10'-- .
-3 -2 -1 0 1 2 3

Figure 5.4.2 Scatter plot for two-phase classification (Phase
I).

shows that the classes are well separated. There is, no

overlap among the classes but two of them are very close

together.

Two classes have only one member in each, Twin Cities M.T.C.,

and Medicine-Lake Lines. From the scatter plot it is obvious

that Twin Cities M.T.C. (Class 2), and North Suburban Lines

(Class 5), are very different from the other systems. Class
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3 includes systems that are located in the Twin Cities Metro

Area: Hopkins, Medicine Lake Lines, and St. Louis Park. Class

4 consists with systems that are located close to the City of

Duluth Metro Area: Duluth Regular Route, Duluth D.A.R.,

Arrowhead, Hibbing, and Virginia.

In the second phase of the classification, four transportation

characteristics were used to classify the systems in classes

1 and 6. On Fig. 5.4.3 there is a scatter plot of the first

versus the second most significant feature for class 1. These

two features represent the 99.76% of the variation that we can

have by using all the transportation data. From the scatter

plot we can see that there are two large classes and one class

that has one member.

On Fig. 5.4.4 there is a scatter plot of the first versus the

second most significant feature for class 6. The two features

represent the 99.75% of the variation that we can have by

using all the transportation data. From the scatter plot we

can see that there are three classes well separated. Class 2

includes two systems that are quite different from the other

systems: Rochester and St. Cloud
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0.7
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0.5
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0.3

0.2
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0
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-0.15 -0.1 -0.05 0 0.05 0.1 0.15

Figure 5.4.3 Scatter plot for two-phase classification (Phase
II, Class 1).

5.5 Existing Classifications (MN/DOT).

All transit providers in the state of Minnesota that apply for

assistance from the state are included in the analysis. The

Minnesota Department of Transportation and, in more recent

years, the Regional Transit Board, are responsible for

administering state funds and assisting in planning for these

systems. MN/DOT currently uses a peer grouping based on

population and type of service provided. This classification

is presented on Fig. 5.5.1.
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1 ------

0.5 L

O

-0.5 V
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Figure 5.4.4 Scatter plot for two-phase
II, Class 6).

classification (Phase
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Figure 5.5.1 Classification of the transit systems based on
population and type of. service (MN / DOT).
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6 Conclusions.

A set of peer groups of Minnesota transit systems has been

found by using a clustering analysis method. The results of

the different classification approaches were compared to

determine the most useful classification. For all the cases

the new proposed method was used.

The classification method that is proposed by this study gives

significantly better results than any other method found in

the literature because of the advantages that has over the

other methods. The new method does not require definition of

any parameters or of any initial settings and always gives a

unique result for a given data set. The classification result

is not depended on the geometric properties of the data and

the method allows reassignment of objects in order to obtain

the best classification. The classification results can be

used as a standard point of reference, e.g. between transit

manager and MN/DOT, because they are unique.

The recommended final classification was chosen on the basis

of its performance on three criteria. First of all, the

scatter plots show distinct clusters that are reasonably

uniform in size and shape. Also, the classification success
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index gets the maximum value for this classification approach.

A high value of this index indicates small variation within

each group relative to the variation between groups. Finally,

the classes show some similarity to the peer groups formed by

MN/DOT. Some of the peer groups were merged while others were

divided.

The classification in two phases, with socioeconomic and

transportation data, led to peer groups whose members are

similar in service area size and type of service provided.

This was the basis for the original MN/DOT peer groups,

although they did not adhere fully to their population

criteria.

A larger set of characteristics was used in this analysis

compared to previous research. This was possible in part

because of the use of Karhunen-Loeve expansion. Since more

characteristics were used, the members of each peer group now

have more characteristics in common. Therefore, they are more

likely to have similar goals and objectives. Consequently, it

is more reasonable to compare the members within a group. By

nature of the clustering algorithm, there are no outliers in

any of the groups. Instead outliers are assigned to separate

groups.
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The recommended peer groups can be used, by MN/DOT and other

transit agencies, for performance evaluation. Funding

allocation and managerial assistance can be determined on the

basis of these groups. Similarly, scheduling and fare

policies can be used for systems in the same peer groups.

The classification method does not give direct answers to some

common problems the transit manager faces but the method can

be a useful part of an expert system for optimal design of

transit service. This expert system will use the

classification results and data from the transit manager, the

MN/DOT, the Census and the transit data to decide on designing

of a new system or changing the existing transit services.

Also it may give answers in other requirements from managers

and MN/DOT, e.g. in many cases two systems with the same

socioeconomic and operating characteristics have different

performance without any obvious reason.

For further analysis, other characteristics should be

considered. More data may be obtained from MN/DOT, the

transit operators, and other sources, as to what

characteristics they feel are important in determining peer

groups. Changes in these characteristics over time could be

used in the clustering analysis. The use of the Karhunen-

Lobve expansion makes this type of analysis more reasonable by
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reducing the dimensionality of the data without any

significant loss of the original information.
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A Classification Success Index.

A method for identifying the number of clusters of points in

a multidimensional Euclidean space is described and an

informal indicator of the "best number" of clusters is

suggested. It is a "variance ration criterion" giving some

insight into the structure of the points. A familiar

objective function applicable in cluster analysis is the

within-group (cluster) sum of squares (WGSS). It seems

natural to regard the optimal grouping of n points into k

clusters as that for which WGSS is minimized. This criterion

reflects a desire to find some minimum variance spherical

clusters.

A.I Methodology Used.

Suppose there are n individuals (or samples from n

populations) with observations on the same v variables for

each individual. We may imagine them as being represented by

n points in a v-dimensional Euclidean space, P,, P2, ... , P,.

The variables permit the computation of an n by n distance

matrix. If we denote the original v by n data matrix by X,

with rows given by the observed variables and with columns
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given by the individuals, we can write X = (xX, x, .. , x ),

where the column x, is a vector of the v coordinates of the

point Pi. If we refer the coordinates to orthogonal axes of

an ordinary Euclidean space then the distance di, between P,

and Pj will be properly defined by the function:

d2 - ( - j)(i- ) , i,j-l,2, . . .,n (A.i.l)

A similar formula applies to the distance between a point and

the centroid of the n points. In the approach to cluster

analysis which we follow, the dispersion of a group of n

points is measured by the sum of the squared distances of the

points from their centroid. This sum is equal to the trace of

the matrix R, but may be obtained from the pairwise distances

dij by applying the formula:

Trace R-n- 1 (d 2 +d+. .+dn_ ) (A.1.2)12 13 4 n-l,n)

If we examine a split leading to a division of the n points

into k groups of n., n2, ... , nk points (n, + n2 + ... + n, =

n), then the WGSS is calculated by applying the right hand

side of Eq. A.1.2 to each of the clusters separately and then

summing the results. We may then write:

WGSS-Trace -Trace R 1+Trace +R ... +Trace Rk (A.1.3)
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where

-1 2 2 2Trace R-n g(dl2 (g)+d g+.+dn 2(g) (A.1.4)
g9 12 (g) 139 ng-ing

with d. (g) denoting the distance between points P, and P, in

the gth cluster (g = 1, 2, ..., k). If k, the number of

clusters, is not known, we proceed as follows: first we take

k = 2, then k = 3, and so on. At each stage we find "the best

sum of squares split", for which we calculate not only the

(minimum) WGSS, but also the (maximum) BGSS and the variance

ratio criterion:

BGSS

VRC- k-(A15)
WGSS
n-k

Eq. A.1.5 give an informal indicator for the best number of

groups. It is evident that this criterion is analogous to the

F-statistic in univariate analysis.

When between two classification results the number of classes

is the same, then one way of comparing the two results is to

compare the variation within the groups to the variation

between groups, by considering the matrix BW~1. This matrix

is the result of multiplying B, the matrix of the sum of

squares between groups by the inverse of W, the matrix of the

sum of squares within groups. The size of BW-' indicates the

general relation between the variation within groups and the
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variation between groups. A large matrix is desirable as it

suggests a high variation between groups compared to variation

within groups. In this case, the determinant of BW"' is used

as an indicator of the size of this matrix. This index can

not be used in cases where the two classification results do

not have the same number of classes, because the determinant

tends to increase as the number of classes increases.

In order to test the sensitivity of the index a small data set

was used. The data set consists of nine points and there are

three classes. The first class has four points, the second

class has three points and the third class has two points

(Fig. A.1.1). The index was tested for two different cases.

In the first case the position of one class was changing. In

this way the variation within the groups was the same but the

variation between the groups was changing. In that test the

class A was moving towards to the class B and after a position

change the index was calculated. In Fig. A.1.2 there is a

line graph which shows all the values of the index. Line

graph "a" describes the variation between classes A and B, and

line graph "b" describes the variation between classes A and

C. On the figure we can see that the variation between A and

B gets the minimum value when the distance between the two

classes becomes almost zero. Similarly, the variation between
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Figure A.1.1 Data set that was used for testing of the

classification index.

classes A and C gets the minimum value when the distance

between the two classes has the minimum value.

In the second case the positions of the cluster centers

remained the same but the two points in class C become more

spread out. In this way the variation between the groups was

the same but the variation within the groups was changing. In

Fig. A.1.3 there is a line graph which shows how the index was

changing. In the beginning the index is very sensitive and

for the first steps the value is reduced to the 10% of the

initial value, then the differences are small.
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Distance
50-- ----

40

3.3 0.1 Index (Thousands) 20.9 31.4 44.3

Figure A.1.2 Change of the classification index as the class
A is moving.

The two testing cases show that the classification index gives

good results and that is sensitive in changes of the within

group variation and in changes of the between group variation.

Because of the differences between the two classification

indexes each index was used for a different purpose. _ The

first classification index was used to specify the optimum

number of classes and the second classification index was used

in order to decide for the most appropriate classification

method.
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Figure A.1.3 Change of the classification index as the class
C is spread out.
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B Classification and Testing Programs.

In this research several classification methods were tested

and many data sets were used, real and randomly generated.

Also different ways to refine the data were used, the data

were scaled or normalized. In order to do this work fast and

more accurately two computer programs were written for these

purposes. The first program was written to test the different

classification algorithms by using real or randomly generated

data. The second program is more complicated because it can

handle data bases, apply classification methods, analyze and

represent the classification results. In this section the

structure of these two programs will be illustrated, and a

summary of their functions will be discussed. Both programs

were written in Microsoft Quick C, v5.1 and a 386 PC

Compatible machine was used. Also a EGA or VGA color monitor

is required to have graphic representations of the data and

the classification results.

B.1 Classification Program.

This program was used to apply the classification algorithms

on real data. Although data from transit system were used in
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this research, the program was written to have general use.

The functions that are included in this program can be divided

in three categories:

* Data base functions.

* Display data functions.

* Classification functions.

The structure of the program is illustrated on Fig. B.I.I.

B.1.1 Data Base Functions.

These functions give the ability to the user to deal with

large data sets. In this study the largest data set had 56

transit systems and for each system 33 indicators were

included. The data base functions are the following:

* New. This function creates a new data base and

prompts the user to input the data. Then a file is

being created with all the data.

* Open. This function restores a data base from a

file.

* Edit. This function gives the ability to the user

to change any value in the data base.

* Add. Delete. With these two functions the user

can add/delete a system in the data base or to

add/delete an indicator in/from all the systems.

* Transform. The user can create new indicators by
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Figure B.1.1 Structure of the classification program.
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multiplying, adding, etc. the existing indicators.

So, from the miles and the cost we can have the

indicator cost/mile.

* Scale. Normalize. By using this function the user

can scale or normalize the data. In this way all

the variables will receive the same weight in the

classification process.

B.1.2 Display Data Functions.

There are two functions that give a graphic representation of

the data base:

* By system. For each transit system all the data

are presented on the screen and the position of the

system is indicated on a map of the state of

Minnesota (Fig. B.1.2).

* By variable. This function does not give a list

with data as previous function but gives

information for each variable. The maximum and the

minimum value, the system distribution of the

variable. The system distribution is presented

also on a map of the state of Minnesota, so the

user can see if there is any relationship between

the variable and the location of the systems (Fig.

B.I.3).
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Figure B.1.2 Display data by systems.

Indicator : Age System
SDistribu tionr

Figure B.1.3 Display data by variable.
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B.1.3 Classification Functions.

After the data set is being retrieved from the data file the

classification functions can be used to classify the data, to

have a correlation table, or to have a graph with the

classification results.

* Select (Systems, Indicators). This function gives

the ability to the user to select the transit

systems and the variables that will be used by the

classification method or by the Karhunen-Lobve

feature extraction.

* Karhunen-Lo6ve extraction. This function performs

the Karhunen-Lobve feature extraction method to the

selected transit systems and variables. The

calculated eigenvectors and eigenvalues are

presented on the screen and also are stored in a

results file.

* Correlation table. This function checks for

multicollinearity between the variables. A

correlation table is created which includes all the

variables. The variables with correlation more

than 90% are indicated and the user has to decide

if the correlated variables will be included in the

classification or not.

* Combined, Density method. These two functions

execute the Combined, or the New classification
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A Classification Success Index.

A method for identifying the number of clusters of points in

a multidimensional Euclidean space is described and an

informal indicator of the "best number" of clusters is

suggested. It is a "variance ration criterion" giving some

insight into the structure of the points. A familiar

objective function applicable in cluster analysis is the

within-group (cluster) sum of squares (WGSS). It seems

natural to regard the optimal grouping of n points into k

clusters as that for which WGSS is minimized. This criterion

reflects a desire to find some minimum variance spherical

clusters.

A.I Methodology Used.

Suppose there are n individuals (or samples from n

populations) with observations on the same v variables for

each individual. We may imagine them as being represented by

n points in a v-dimensional Euclidean space, P1 , P,, ... , Pn,

The variables permit the computation of an n by n distance

matrix. If we denote the original v by n data matrix by X,

with rows given by the observed variables and with columns
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given by the individuals, we can write X = (K x 2, ..., xn),

where the column x, is a vector of the v coordinates of the

point Pi. If we refer the coordinates to orthogonal axes of

an ordinary Euclidean space then the distance di, between P,

and P, will be properly defined by the function:

d#2 -f(x -x )(x -x ), i,j-1,2, .. .,n (A.I.I)

A similar formula applies to the distance between a point and

the centroid of the n points. In the approach to cluster

analysis which we follow, the dispersion of a group of n

points is measured by the sum of the squared distances of the

points from their centroid. This sum is equal to the trace of

the matrix R, but may be obtained from the pairwise distances

dij by applying the formula:

Trace -- n-1(d2 +d2 +. . +d_ ) (A.1.2)

If we examine a split leading to a division of the n points

into k groups of n., n,, ... , n, points (n, + n2 + ... + nk =

n), then the WGSS is calculated by applying the right hand

side of Eq. A.1.2 to each of the clusters separately and then

summing the results. We may then write:

WGSS-Trace H-Trace 91+Trace + .+Trace .k (A.1.3)
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where

-1 2 2 2Trace R =n (dl () +dl d ...+dn (A.1.(4)- g 12 (g) 13g g-l) (g1.4

with dj(g) denoting the distance between points Pi and P, in

the gth cluster (g = 1, 2, ... , k). If k, the number of

clusters, is not known, we proceed as follows: first we take

k = 2, then k = 3, and so on. At each stage we find "the best

sum of squares split", for which we calculate not only the

(minimum) WGSS, but also the (maximum) BGSS and the variance

ratio criterion:

BGSS

VRC-k- (A..15)
WGSS
n-k

Eq. A.1.5 give an informal indicator for the best number of

groups. It is evident that this criterion is analogous to the

F-statistic in univariate analysis.

When between two classification results the number of classes

is the same, then one way of comparing the two results is to

compare the variation within the groups to the variation

between groups, by considering the matrix BW-'. This matrix

is the result of multiplying B, the matrix of the sum of

squares between groups by the inverse of W, the matrix of the

sum of squares within groups. The size of BW'1 indicates the

general relation between the variation within groups and the
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variation between groups. A large matrix is desirable as it

suggests a high variation between groups compared to variation

within groups. In this case, the determinant of BW- is used

as an indicator of the size of this matrix. This index can

not be used in cases where the two classification results do

not have the same number of classes, because the determinant

tends to increase as the number of classes increases.

In order to test the sensitivity of the index a small data set

was used. The data set consists of nine points and there are

three classes. The first class has four points, the second

class has three points and the third class has two points

(Fig. A.I.1). The index was tested for two different cases.

In the first case the position of one class was changing. In

this way the variation within the groups was the same but the

variation between the groups was changing. In that test the

class A was moving towards to the class B and after a position

change the index was calculated. In Fig. A.1.2 there is a

line graph which shows all the values of the index. Line

graph "a" describes the variation between classes A and B, and

line graph "b" describes the variation between classes A and

C. On the figure we can see that the variation between A and

B gets the minimum value when the distance between the two

classes becomes almost zero. Similarly, the variation between
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Figure A1.1. Data set that was used for testing of the
classification index.

classes A and C gets the minimum value when the distance

between the two classes has the minimum value.

In the second case the positions of the cluster centers

remained the same but the two points in class C become more

spread out. In this way the variation between the groups was

the same but the variation within the groups was changing. In

Fig. A.1.3 there is a line graph which shows how the index was

changing. In the beginning the index is very sensitive and

for the first steps the value is reduced to the 10% of the

initial value, then the differences are small.
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3.3 0.1 Index (Thousands) 20.9 31.4 44.3

Figure A.1.2 Change of the classification index as the class
A is moving.

The two testing cases show that the classification index gives

good results and that is sensitive in changes of the within

group variation and in changes of the between group variation.

Because of the differences between the two classification

indexes each index was used for a different purpose. The

first classification index was used to specify the optimum

number of classes and the second classification index was used

in order to decide for the most appropriate classification

method.
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Figure A.1. 3

0.3 0.2 Index (Thousands) 0-09 0.07 0.0o

Change of the classification index as the class
C is spread out.
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B Classification and Testing Programs.

In this research several classification methods were tested

and many data sets were used, real and randomly generated.

Also different ways to refine the data were used, the data

were scaled or normalized. In order to do this work fast and

more accurately two computer programs were written for these

purposes. The first program was written to test the different

classification algorithms by using real or randomly generated

data. The second program is more complicated because it can

handle data bases, apply classification methods, analyze and

represent the classification results. In this section the

structure of these two programs will be illustrated, and a

summary of their functions will be discussed. Both programs

were written in Microsoft Quick C, v5.1 and a 386 PC

Compatible machine was used. Also a EGA or VGA color monitor

is required to have graphic representations of the data and

the classification results.

B.1 Classification Program.

This program was used to apply the classification algorithms

on real data. Although data from transit system were used in
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Figure B.1.1 Structure of the classification program.
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multiplying, adding, etc. the existing indicators.

So, from the miles and the cost we can have the

indicator cost/mile.

* Scale. Normalize. By using this function the user

can scale or normalize the data. In this way all

the variables will receive the same weight in the

classification process.

B.1.2 Display Data Functions.

There are two functions that give a graphic representation of

the data base:

* By system. For each transit system all the data

are presented on the screen and the position of the

system is indicated on a map of the state of

Minnesota (Fig. B.1.2).

* By variable. This function does not give a list

with data as previous function but gives

information for each variable. The maximum and the

minimum value, the system distribution of the

variable. The system distribution is presented

also on a map of the state of Minnesota, so the

user can see if there is any relationship between

the variable and the location of the systems (Fig.

B.I1.3).
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Figure B.1.2 Display data by systems.

Indicator : Age System
1%A - 4 do I ; £U aM l- IP

Figure B.1.3 Display data by variable.
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B.1.3 Classification Functions.

After the data set is being retrieved from the data file the

classification functions can be used to classify the data, to

have a correlation table, or to have a graph with the

classification results.

* Select (Systems, Indicators). This function gives

the ability to the user to select the transit

systems and the variables that will be used by the

classification method or by the Karhunen-Lo6ve

feature extraction.

* Karhunen-Lobve extraction. This function performs

the Karhunen-Lobve feature extraction method to the

selected transit systems and variables. The

calculated eigenvectors and eigenvalues are

presented on the screen and also are stored in a

results file.

*Correlation table. This function checks for

multicollinearity between the variables. A

correlation table is created which includes all the

variables. The variables with correlation more

than 90% are indicated and the user has to decide

if the correlated variables will be included in the

classification or not.

* Combined, Density method. These two functions

execute the Combined, or the New classification
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algorithm, consequently. The systems and the data

that were selected are being used. A summary of

the classification is represented on the screen.

The classification results are stored with more

details in a results file.

* Graphs 2.D and 3.D. These two functions present

the classification results by a scatter plot. In

the two/three dimensional graphs the scatter plot

of two/three variables is created. In both cases

the systems that are assigned in different classes

are represented with different colors. In this way

the user can have a view of the classes and see if

there is overlapping.

* Minnesota map. This function, like the previous

one, present the classification results by using

graphics. A map with all the transit systems in

Minnesota is presented, and each class of system is

marked with different color. By using this

function the user can observe if there are any

classification patterns, e.g. systems that are

located on the west part of the state of Minnesota.

Ap. B - 8



APPENDIX B

B.2 Testing Program.

This program was used to test different classification

algorithms by using real and randomly generated data. The

program is using three windows on the screen (Fig. B.2.1):

OPTIONS

1. Generate
2. Read data
3. Rand C1)
4. Points (20)
5. Classes (3)
6. M-Distance
?. Combined
8. Surface 2.D.
9. Surface 3.D.
0. Density
A. Print
B. Quit

Messages

rob

Figure B.2.1 The three windows that the testing program is
using.

* Options Window. This window has a list with all

the functions that the program can execute.

SMessages Window. This window shows all the

messages that the gives for different reasons, e.g.

in cases of errors.

* Graphics Window. On this window the program shows

a graphical representation of the data, of the

Ap. B - 9
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classification results, or more complicated

graphics, e.g. the cumulative potential function

for a set of points.

During this research the program was updated and different

functions were added or modified. The functions that are

included in the latest version of the program are the

following (in the same rank that appear on the Options

Window):

* Generate. This function is using the random

generator of the C Language, to generate a

predefined number of data points. In the same time

the data points are represented on the Graphics

Window. In this way the user can create an

unlimited number of data sets, to test the

classification algorithms.

* Read data. This function allows the user to read

a data set from a file. So, the method can be

tested with real data, or with data that have

specific characteristics, e.g. chain effect.

* Rand. This function controls the starting point

of the random generator of the C Language. The

default value is 1.

* Number of points. The number of points that will

be generated each time that the function "Generate"
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is executed. There is no limit for the number of

points, but a selection of more than 40 points

gives, most of the times, a "cloud" of points, the

default number of points is 20.

* Number of classes. The number of desired classes,

can be selected by this function. The maximum

number of classes, that can be selected, is 9. The

program has as default value 3.

* Max-distance. Combined. Density. These three

functions execute the Maximum-Distance, the

Combined, or the New classification algorithm,

consequently. The most current data set, that was

generated randomly or loaded from a file is being

used. The results are represented on the Graphic

Window by using different patterns for each class

(Fig. B.2.2).

*Surface 2.D. This function gives a two-

dimensional representation of the cumulative

potential function, for a given data set. The

difference values of the function are represented

by the use of equipotential contours.

* Surface 3.D. This function works exactly like the

two-dimensional function, but in this case the

cumulative potential function is represented by

using three-dimensional graphs.
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OPTIONS

1. Generate
2. Read data
3. Rand (1)
4. Points (20)
5. Classes (3)
6. M-Distance
7. Combined
8. Surface 2.D.
9. Surface 3.D.
0. Density
A. Print
B. Quit

+ x

+

+ x

x
U x

IU

UI

IU

UI

Figure B.2.2 Graphic representation of the
classification results.

The structure of the program is presented on Fig. B.2.3.
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IEnERA~E

R EAD
R DATA

RAND

SPOi NTS

M-DiSTANCE

i- F C

SSURFACE
3.D.

SDE NSI TY

SPRINT
r-

L

Figure B.2.3 Structure of the testing program.
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